
DRAINAGE ANALYSIS & SEDIMENT AND EROSION CONTROL PLAN Prepared for: DR LEMIEUX BUILDERS, INC. 76 EXETER ROAD

Prepared by:

NEWMARKET, NH 03857

BEALS ASSOCIATES, PLLC 70 PORTSMOUTH AVENUE STRATHAM, NH 03885

Project Number:
NH-1449
242 South Main Street
Newmarket, New Hampshire
May 23, 2023
Revised 10-17-23

DESIGN METHOD OBJECTIVES

DR Lemieux Builders is proposing a 32-unit age-restricted multi-family residential development on approximately 7.22-acres of land located at 242 So. Main St.in Newmarket, NH. The existing property is located on a parcel (Tax Map U4, Lot 69) consisting of forest, a single-family house and mowed fields. The development will include: on-site underground electric, telephone & cable; municipal water and sewer; and Low Impact Development/BMP storm water management and treatment. Proper erosion controls will be proposed where construction could result in sediment transport for the development. A drainage analysis of the proposed development including a proposed subdivided lot from the parent parcel was conducted for the purpose of estimating the peak rate of stormwater run-off and to subsequently design adequate drainage structures. Two models were compiled, one for the area in its existing (pre-construction) condition, and a second for its proposed (post-construction) condition. The analysis was conducted using data for the 1", 2Yr, 10Yr, 25Yr and 50Yr – 24 Hr storm (100Yr storm for pond evaluation) events using the USDA SCS TR-20 method within the HydroCAD Stormwater Modeling System environment. As Newmarket is in the defined coastal region by NHDES, a factor of 15% Has been added to the 24 Hr rainfall values as provided by the Northeast Regional Climate Center at Cornell University. The purpose of this analysis is to estimate the peak rates of run-off from the site for swale adequacy purposes, and to compare the peak rate of run-off between the existing and proposed conditions.

ANALYSIS POINT COMPONENT PEAK RATE of DISCHARGE (CFS) Reach 100

Reach 100									
2 YR 10 YR		25 YR		50YR		100YR			
Existing	Proposed	Existing	Proposed	Existing	Proposed	Existing	Proposed	Existing	Proposed
7 59	6.90	16.32	15.25	23.87	23.29	31.01	30.56	39.65	39 34

Stormwater Volume (AF)

Analysis Point

Reach 100

2 Y	2 YR 10 YR		25 YR		50YR		100YR		
Existing	Proposed	Existing	Proposed	Existing	Proposed	Existing	Proposed	Existing	Proposed
0.929	0.832	1.934	1.776	2.812	2.630	3.675	3.467	4.732	4.512

The existing property is located on a parcel (Tax Map U4, Lot 69) consisting of wetlands, forest, a single-family house and mowed fields. The existing topography is such that the site analysis is a single analysis point reach. The reach flows offsite to the north-northwest through the parcel and ultimately flows into a large wetland system that ultimately drains toward the Piscassic River.

The proposed 32-unit development includes 220'+/- of proposed private driveway that intersects So Main Street. The proposed layout will divide the parcel into 4 different subcatchments. The peak rate of run-off from the proposed development is slightly decreased from that of the existing conditions. The addition of culverts, bioretention ponds, and stone roof infiltration trenches infiltrate and/or direct the cleaned run off overland to the analysis points. All roadway runoff receives treatment through a bioretention ponds and the natural buffer prior to discharge. In addition, the potential for increased erosion and sedimentation is handled by way of riprap outlet protection and erosion control fencing/berm. The use of Best Management Practices per the NH Stormwater Manual have been applied to the design of these structures and will be

observed during all stages of construction. All land disturbed during construction will be permanently stabilized within 60 days of groundbreaking, and existing wetlands and abutters will suffer no adversity resulting from this development.

Table of Contents

1.0	Rainfall Characteristics	Page 1
2.0	Existing Conditions Analysis	Page 1
3.0	Proposed Subdivision Analysis	Pages 1-2
4.0	Sediment & Erosion Control, BMP's	Pages 2-5
5.0	Conclusion	Page 6

Appendix I - Existing Conditions Analysis

Summary 2 YR - 24 HR rainfall = 3.62" Complete 10 YR - 24 HR rainfall = 5.50" Summary 25 YR - 24 HR rainfall = 6.99" Summary 50 YR - 24 HR rainfall = 8.38" Summary 100 YR - 24 HR rainfall = 10.06"

Sheet W-1 Existing Conditions Watershed Plan

Appendix II - Proposed Conditions Analysis

Summary 2 YR - 24 HR rainfall = 3.62" Complete 10 YR - 24 HR rainfall = 5.50" Summary 25 YR - 24 HR rainfall = 6.99" Summary 50 YR - 24 HR rainfall = 8.38" Summary 100 YR - 24 HR rainfall = 10.06"

Note: rainfall events based on information from Extreme Precipitation Tables. Sheet W-2 Proposed Conditions Watershed Plan

Appendix III - Charts, Graphs, and Calculations

1.0 RAINFALL CHARACTERISTICS

This drainage report includes an existing conditions analysis of the area involved in the proposed development, as well as proposed conditions, or post-construction analysis of the same location. These analyses were accomplished using the USDA SCS TR-20 Method within the HydroCAD Stormwater Modeling System. The curve numbers were developed using the SCS TR-55 Runoff Curve numbers for Urban Areas. A Type III SCS 24-hour rainfall distribution was utilized in analyzing the data for the 2, 10, & 50 Yr - 24 Hr storm events using the USDA SCS TR-20 method within the HydroCAD Stormwater Modeling System environment.

ANALYSIS POINT COMPONENT PEAK RATE of DISCHARGE (CFS)

Reach 100

 2 YR
 10 YR
 25 YR
 50YR
 100YR

 Existing Proposed Existing Proposed Fixed Proposed Prop

Stormwater Volume (AF)

Analysis Point

Reach 100

 2 YR
 10 YR
 25 YR
 50YR
 100YR

 Existing Proposed 0.929
 Existing Proposed 0.832
 Existing Proposed 0.812
 Existing Proposed 0.812
 Proposed 0.812
 Existing Proposed 0.812
 Existing Proposed 0.812
 Existing Proposed 0.812
 Existing 0.812
 Exis

2.0 EXISTING CONDITIONS

Reference: Sheet W-1, Existing Conditions Watershed Plan (Enclosed)

Existing Conditions Plan

The existing property is located on a parcel (Tax Map U4, Lot 69) consisting of wetlands, forest, a single-family house and mowed fields. The existing topography is such that the site analysis is a single analysis point reach. The reach flows offsite to the north-northwest through the parcel and ultimately flows into a large wetland system that ultimately drains toward the Piscassic River.

Classified by NRCS Mapping, the land within the drainage analysis is composed of slopes ranging from 0% to 8% +, and soils categorized into the Hydrologic Soil Groups (HSG) C & D.

3.0 PROPOSED CONDITIONS

Reference: W-Sheets Proposed Conditions Watershed Plan (Enclosed)

C Sheets Proposed Conditions Plans

The addition of the impervious area from the paved roadways, and the 32 unit building for the residential units cause an increase in the curve number (Cn) and a decrease in the time of concentration (Tc), the net result being a potential increase in peak rates of run-off from the site. The proposed 32-unit development includes 220'+/- of proposed private driveway that intersects So Main Street. The proposed layout will divide the parcel into 4 different subcatchments. The peak rate of run-off from the proposed development is slightly decreased from that of the existing conditions. The addition of culverts, bioretention ponds, and stone roof infiltration

trenches infiltrate and/or direct the cleaned run off overland to the analysis points. All driveway runoff receives treatment through a bioretention ponds and the natural buffer prior to discharge. Ksat values for the infiltration rates were from SSSNNE published values with a safety factor of 2. Based on these design features and the sequencing of pretreatment and treatment BMP's, the required 80% removal of TSS and 40% removal of TN & TP will be exceeded as required by Newmarket regulations (see removal efficiency summary table in appendices). In addition, the potential for increased erosion and sedimentation is handled by way of riprap outlet protection and erosion control fencing/berm. The use of Best Management Practices per the NH Stormwater Manual have been applied to the design of these structures and will be observed during all stages of construction. All land disturbed during construction will be permanently stabilized within 60 days of groundbreaking, and existing wetlands and abutters will suffer no adversity resulting from this development.

In an effort to prevent the sedimentation of abutting property, the driveway and parking areas will convey stormwater to the bioretention ponds and overflow discharges to the natural buffer to the wetlands. During construction, appropriate BMP's will be applied so as to negate the potential for sediment-laden run-off to discharge into wetlands prior to the final stabilization of the proposed grading. The structures outlined in this proposal provide for adequate treatment of stormwater run-off for sediment control.

4.0 SEDIMENT & EROSION CONTROL PLANS BEST MANAGEMENT PRACTICES (BMP's)

The proposed site development is protected from erosion and the roadways and abutting properties are protected from sediment by the use of Best Management Practices as outlined in the NH Stormwater Manual. Any area disturbed by construction will be permanently restabilized within 60 days and abutting properties and wetlands will not be adversely affected by this development. All swales and drainage structures will be constructed and stabilized prior to having run-off directed to them.

4.1 Silt Fence / Construction Fence

The plan set demonstrates the location of silt fence for sediment control. In areas where the limits of construction need to be emphasized to operators, construction fence for added visibility will be installed. Erosion and Sediment Control Details have the specifications for installation and maintenance of the silt fence. Orange construction fence will be VISI Perimeter Fence by Conwed Plastic Fencing, or equal. The four-foot fencing to be installed using six-foot posts at least two feet in the ground with spacing of six to eight feet.

4.2 Drainage Swales / Stormwater Conveyance Channels

Drainage swales will be stabilized with vegetation for long term cover as outlined below using seed mixture C. As a general rule, velocities in the swale should not exceed 3.0 feet per second for a vegetated swale although velocities as high as 4.5 FPS are allowed under certain soil conditions.

4.3 Vegetated Stabilization

All areas that are disturbed during construction will be stabilized with vegetated material within 30 days of breaking ground. Construction will be managed in such a manner that erosion is prevented and that no abutter's property will be subjected to any siltation, unless otherwise permitted. All areas to be planted with grass for long-term cover will follow the specification as follows:

Mixture	Pounds	Pounds per
	per Acre	1,000 Sq. Ft.
Tall Fescue	20	0.45
Creeping Red Fescue	28	0.65
Total	48	1.10

4.4 Stabilized Construction Entrance

A temporary gravel construction entrance provides an area where mud can be dislodged from tires before the vehicle leaves the construction site to reduce the amount of mud and sediment transported onto paved municipal and state roads. The stone size for the pad should be between 1 and 2-inch coarse aggregate, and the pad itself constructed to a minimum length of 50' for the full width of the access road. The aggregate should be placed at least six inches thick.

4.5 Level Spreaders

Level spreaders enable any run-off directed towards them to be spread evenly into sheet flow prior to discharge into wetlands or treatment by a filter strip, thus allowing for better filter strip efficiency and a lesser potential for erosion.

4.6 Filter Strips

Filter strips are areas of land with natural or planted vegetation designed to receive sheet run-off from upgradient development. These natural areas, preferably wooded, are effective in removing sediment and sediment-laden pollutants from such run-off, although their effectiveness is severely diminished when forced to deal with concentrated flow and must therefore be equipped with a level-spreading device. Filter strips should not have a slope exceeding fifteen percent and have a minimum length of seventy-five feet.

4.7 Environmental Dust Control

Dust will be controlled on the site by the use of multiple Best Management Practices. Mulching and temporary seeding will be the first line of protection to be utilized where problems occur. If dust problems are not solved by these applications, the use of water and calcium chloride can be applied. Calcium chloride will be applied at a rate that will keep the surface moist but not cause pollution.

4.8 Construction Sequence

1. Construct and/or install temporary and permanent sediment erosion and detention control facilities (silt fence, vegetated swales, level spreaders, and constructed

filter strips), as required. Erosion, sediment and facilities shall be installed and stabilized prior to any earth moving operation, and prior to directing run-off to them.

- 2. Clear, cut, grub, and dispose of debris in approved facilities.
- 3. Excavate and stockpile topsoil / loam. All disturbed areas shall be stabilized immediately after grading.
- 4. Construct the roadway and its associated drainage structures.
- 5. Begin permanent and temporary seeding and mulching. All cut and fill slopes and disturbed areas shall be seeded and mulched as required, or directed.
- 6. Daily, or as required, construct temporary berms, drainage ditches, sediment traps, etc. to prevent erosion on the site and prevent any siltation of abutting waters or property.
- 7. Inspect and maintain all erosion and sediment control measures during construction every two weeks and after every storm event with 0.25" or more rain.
- 9. Complete permanent seeding and landscaping.
- 9. Remove temporary erosion control measures after seeding areas have established themselves and site improvements are complete. Smooth and re-vegetate all disturbed areas.
- 10. All swales and drainage structures will be constructed and stabilized prior to having run-off being directed to them.
- 11. Finish graveling all roadways/parking.
- 4.9 Temporary Erosion Control Measures
 - 1. The smallest practical area of land shall be exposed at any one time.
 - 2. Erosion, sediment control measures shall be installed as shown on the plans and at locations as required, or directed by the engineer.
 - 3. All disturbed areas shall be returned to original grades and elevations. Disturbed areas shall be loamed with a minimum of 4" of loam and seeded with not less than 1.10 pound of seed per 1,000 square feet (48 pounds per acre) of area.
 - 4. Silt fences and other barriers shall be inspected periodically and after every rainstorm during the life of the project. All damaged areas shall be repaired; sediment deposits shall periodically be removed and properly disposed of.

- 5. After all disturbed areas have been stabilized, the temporary erosion control measures are to be removed and the area disturbed by the removal smoothed and revegetated.
- 6. Areas must be seeded and mulched within 5 days of final grading, permanently stabilized within 15 days of final grading, or temporarily stabilized within 30 days of initial disturbance of soil.

4.11 Inspection and Maintenance Schedule

Fencing/erosion control berm will be inspected during and after storm events to ensure that the fence still has integrity and is not allowing sediment to pass. Sediment build-up in swales and level spreaders will be removed if it is deeper than six inches.

5.0 CONCLUSION

This proposed development at 242 So. Main St. in Newmarket, NH will have no adverse effect on the abutting property owners by way of storm water run-off or siltation. The post-construction peak rate of run-off for the site has been decreased from that of the existing conditions and roadway run-off will treatment by either constructed or natural methods. Appropriate steps will be taken to eliminate erosion and sedimentation; these will be accomplished through the construction of a drainage system consisting of culverts, bioretention ponds, stone drip edges for roof infiltration, and riprap outlet protection. The Best Management Practices developed by the State of New Hampshire have been utilized in the design of this system and these applications will be enforced throughout the construction process.

A Site Specific, Terrain Alteration Permit (RSA 485: A-17) is not required for this project due to the area of disturbance being less than 100,000 square feet.

Respectfully Submitted,

BEALS ASSOCIATES, PLLC.

Chrisitan D. Smith

Christian O. Smith, PE Principal

APPENDIX I

Existing Conditions Drainage Analysis

Summary 2 YR - 24 HR rainfall = 3.62"

Complete 10 YR - 24 HR rainfall = 5.50"

Summary 25 YR - 24 HR rainfall = 6.99"

Summary 50 YR - 24 HR rainfall = 8.38"

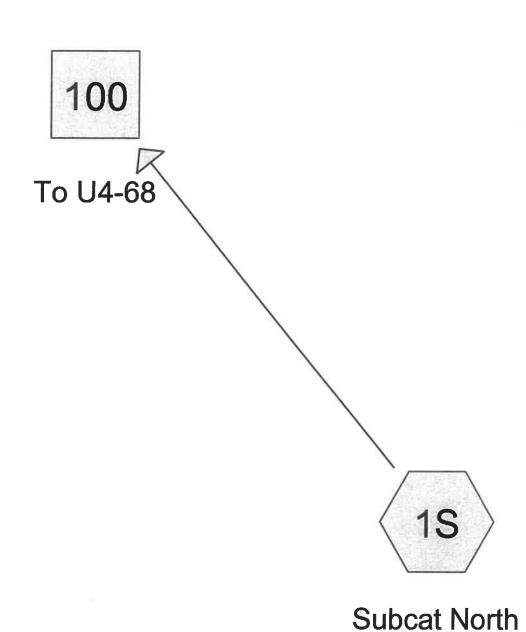
Summary 100 YR - 24 HR rainfall = 10.06"

APPENDIX II

Proposed Conditions Drainage Analysis

Summary 2 YR - 24 HR rainfall = 3.62"

Complete 10 YR - 24 HR rainfall = 5.50"


Summary 25 YR - 24 HR rainfall = 6.99"

Summary 50 YR - 24 HR rainfall = 8.38"

Summary 100 YR - 24 HR rainfall = 10.06"

APPENDIX III

Charts, Graphs, and Calculations

Existing Conditions
Prepared by Beals Associates, PLLC
HydroCAD® 10.20-2g s/n 01754 © 2022 HydroCAD Software Solutions LLC

Printed 5/24/2023 Page 2

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
2.470	74	>75% Grass cover, Good, HSG C (1S)
0.256	98	Paved roads w/curbs & sewers, HSG C (1S)
0.039	98	Roofs, HSG C (1S)
3.296	70	Woods, Good, HSG C (1S)
2.270	77	Woods, Good, HSG D (1S)
8.331	74	TOTAL AREA

Prepared by Beals Associates, PLLC HydroCAD® 10.20-2g s/n 01754 © 2022 HydroCAD Software Solutions LLC

Printed 5/24/2023

Page 3

Soil Listing (all nodes)

Area (acres)	Soil Group	Subcatchment Numbers
0.000	HSG A	
0.000	HSG B	
6.061	HSG C	1S
2.270	HSG D	1S
0.000	Other	
8.331		TOTAL AREA

242 S Main - Ex Cond Type III 24-hr 2-Yr Rainfall=3.64"

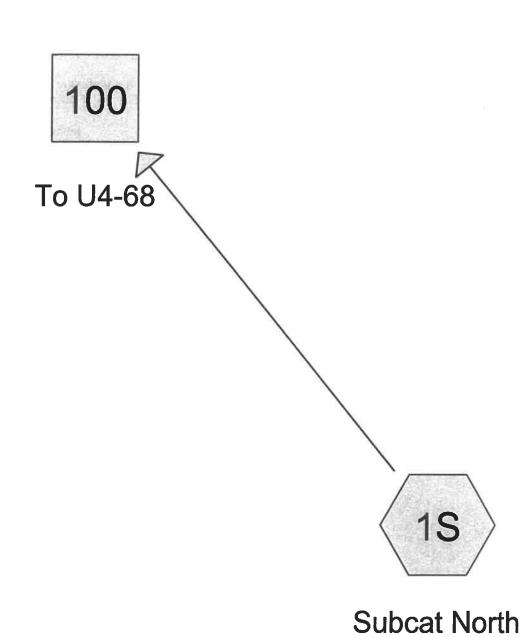
Prepared by Beals Associates, PLLC

Printed 5/24/2023

HydroCAD® 10.20-2g s/n 01754 © 2022 HydroCAD Software Solutions LLC

Page 4

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method


Subcatchment 1S: Subcat North

Runoff Area=362,906 sf 3.54% Impervious Runoff Depth=1.34" Flow Length=860' Tc=26.1 min CN=74 Runoff=7.59 cfs 0.929 af

Reach 100: To U4-68

Inflow=7.59 cfs 0.929 af Outflow=7.59 cfs 0.929 af

Total Runoff Area = 8.331 ac Runoff Volume = 0.929 af Average Runoff Depth = 1.34" 96.46% Pervious = 8.036 ac 3.54% Impervious = 0.295 ac

242 S Main - Ex Cond Type III 24-hr 10-Yr Rainfall=5.52" Printed 5/24/2023

Prepared by Beals Associates, PLLC

HydroCAD® 10.20-2g s/n 01754 © 2022 HydroCAD Software Solutions LLC

Page 2

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Subcat North

Runoff Area=362,906 sf 3.54% Impervious Runoff Depth=2.79" Flow Length=860' Tc=26.1 min CN=74 Runoff=16.32 cfs 1.934 af

Reach 100: To U4-68

Inflow=16.32 cfs 1.934 af Outflow=16.32 cfs 1.934 af

Total Runoff Area = 8.331 ac Runoff Volume = 1.934 af Average Runoff Depth = 2.79" 96.46% Pervious = 8.036 ac 3.54% Impervious = 0.295 ac

Prepared by Beals Associates, PLLC

HydroCAD® 10.20-2g s/n 01754 © 2022 HydroCAD Software Solutions LLC

Page 3

Summary for Subcatchment 1S: Subcat North

Runoff = 16.32 cfs @ 12.38 hrs, Volume=

1.934 af, Depth= 2.79"

Routed to Reach 100: To U4-68

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.52"

A	rea (sf)	CN [Description						
	11,149	98	Paved road	ls w/curbs &	& sewers, HSG C				
	1,703	98 F	Roofs, HSC	€ C	·				
1	07,605	74 >	>75% Gras	75% Grass cover, Good, HSG C					
1	43,557	70 \	Noods, Go	Voods, Good, HSG C					
	98,892	77 \	Voods, Go	Voods, Good, HSG D					
3	62,906	74 \	74 Weighted Average						
3	50,054	(96.46% Pei	vious Area					
	12,852	3	3.54% Impe	ervious Area	a				
_									
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
11.2	50	0.0250	0.07		Sheet Flow, Sheet				
					Woods: Light underbrush n= 0.400 P2= 3.24"				
12.6	397	0.0110	0.52		Shallow Concentrated Flow, SC to VPD				
					Woodland Kv= 5.0 fps				
2.3	413	0.0072	3.03	94.50	,				
					Area= 31.2 sf Perim= 51.0' r= 0.61'				
					n= 0.030 Earth, grassed & winding				
26.1	860	Total							

Summary for Reach 100: To U4-68

Inflow Area = 8.331 ac, 3.54% Impervious, Inflow Depth = 2.79" for 10-Yr event

Inflow = 16.32 cfs @ 12.38 hrs, Volume= 1.934 af

Outflow = 16.32 cfs @ 12.38 hrs, Volume= 1.934 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

To U4-68

Subcat North

242 S Main - Ex Cond Type III 24-hr 25-Yr Rainfall=7.01"

Prepared by Beals Associates, PLLC

Printed 5/24/2023

HydroCAD® 10.20-2g s/n 01754 © 2022 HydroCAD Software Solutions LLC

Page 5

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Subcat North

Runoff Area=362,906 sf 3.54% Impervious Runoff Depth=4.05" Flow Length=860' Tc=26.1 min CN=74 Runoff=23.78 cfs 2.812 af

Reach 100: To U4-68

Inflow=23.78 cfs 2.812 af Outflow=23.78 cfs 2.812 af

Total Runoff Area = 8.331 ac Runoff Volume = 2.812 af Average Runoff Depth = 4.05" 96.46% Pervious = 8.036 ac 3.54% Impervious = 0.295 ac To U4-68

Subcat North

Routing Diagram for Existing Conditions
Prepared by Beals Associates, PLLC, Printed 5/24/2023
HydroCAD® 10.20-2g s/n 01754 © 2022 HydroCAD Software Solutions LLC

242 S Main - Ex Cond Type III 24-hr 50-Yr Rainfall=8.41"

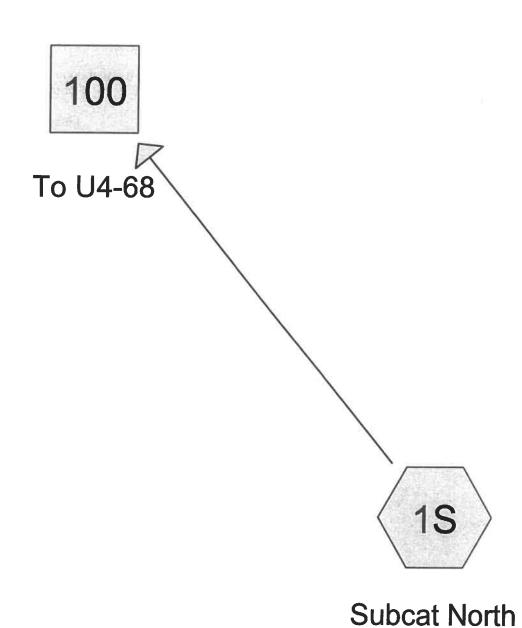
Prepared by Beals Associates, PLLC

Printed 5/24/2023

HydroCAD® 10.20-2g s/n 01754 © 2022 HydroCAD Software Solutions LLC

Page 6

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method


Subcatchment 1S: Subcat North

Runoff Area=362,906 sf 3.54% Impervious Runoff Depth=5.29" Flow Length=860' Tc=26.1 min CN=74 Runoff=31.01 cfs 3.675 af

Reach 100: To U4-68

Inflow=31.01 cfs 3.675 af Outflow=31.01 cfs 3.675 af

Total Runoff Area = 8.331 ac Runoff Volume = 3.675 af Average Runoff Depth = 5.29" 96.46% Pervious = 8.036 ac 3.54% Impervious = 0.295 ac

242 S Main - Ex Cond Type III 24-hr 100 Yr Rainfall=10.06"

Prepared by Beals Associates, PLLC

Printed 5/24/2023

HydroCAD® 10.20-2g s/n 01754 © 2022 HydroCAD Software Solutions LLC

Page 7

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Subcat North

Runoff Area=362,906 sf 3.54% Impervious Runoff Depth=6.80" Flow Length=860' Tc=26.1 min CN=74 Runoff=39.65 cfs 4.723 af

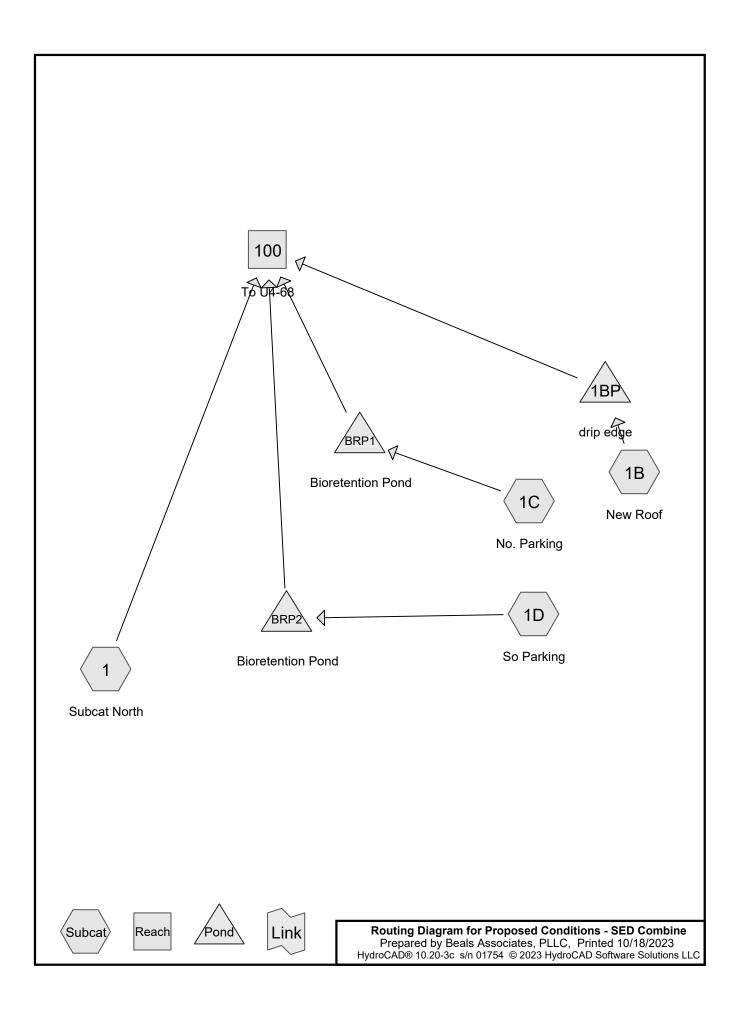
Reach 100: To U4-68

Inflow=39.65 cfs 4.723 af Outflow=39.65 cfs 4.723 af

Total Runoff Area = 8.331 ac Runoff Volume = 4.723 af Average Runoff Depth = 6.80" 96.46% Pervious = 8.036 ac 3.54% Impervious = 0.295 ac

APPENDIX II

Proposed Conditions Drainage Analysis


Summary 2 YR - 24 HR rainfall = 3.62"

Complete 10 YR - 24 HR rainfall = 5.50"

Summary 25 YR - 24 HR rainfall = 6.99"

Summary 50 YR - 24 HR rainfall = 8.38"

Summary 100 YR - 24 HR rainfall = 10.06"

Proposed Conditions - SED Combine
Prepared by Beals Associates, PLLC
HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions LLC

Printed 10/18/2023 Page 2

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
1.986	74	>75% Grass cover, Good, HSG C (1, 1B, 1C, 1D)
0.319	98	Paved parking, HSG C (1C, 1D)
0.256	98	Paved roads w/curbs & sewers, HSG C (1, 1D)
0.233	98	Roofs, HSG C (1, 1B)
3.296	70	Woods, Good, HSG C (1)
2.270	77	Woods, Good, HSG D (1)
8.360	76	TOTAL AREA

Proposed Conditions - SED Combine
Prepared by Beals Associates, PLLC
HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions LLC

Printed 10/18/2023 Page 3

Soil Listing (all nodes)

Area (acres)	Soil Group	Subcatchment Numbers
0.000	HSG A	_
0.000	HSG B	
6.090	HSG C	1, 1B, 1C, 1D
2.270	HSG D	1
0.000	Other	
8.360		TOTAL AREA

Proposed Conditions - SED Combine
Prepared by Beals Associates, PLLC
HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions LLC

Printed 10/18/2023

Page 4

Ground Covers (all nodes)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.000	0.000	1.986	0.000	0.000	1.986	>75% Grass cover, Good	1, 1B,
							1C, 1D
0.000	0.000	0.319	0.000	0.000	0.319	Paved parking	1C, 1D
0.000	0.000	0.256	0.000	0.000	0.256	Paved roads w/curbs & sew	ers1, 1D
0.000	0.000	0.233	0.000	0.000	0.233	Roofs	1, 1B
0.000	0.000	3.296	2.270	0.000	5.566	Woods, Good	1
0.000	0.000	6.090	2.270	0.000	8.360	TOTAL AREA	

242 South Main St. Newmarket

Type III 24-hr 2-Yr Rainfall=3.62"

Printed 10/18/2023

Page 5

Prepared by Beals Associates, PLLC HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions LLC

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1: SubcatNorth Runoff Area=325,014 sf 3.07% Impervious Runoff Depth=1.32"

Flow Length=860' Tc=26.1 min CN=74 Runoff=6.72 cfs 0.823 af

Subcatchment B: New Roof Runoff Area=9,146 sf 92.37% Impervious Runoff Depth=3.16"

Tc=6.0 min CN=96 Runoff=0.72 cfs 0.055 af

Subcatchment C: No. Parking Runoff Area=7,993 sf 74.58% Impervious Runoff Depth=2.75"

Tc=6.0 min CN=92 Runoff=0.57 cfs 0.042 af

Subcatchment1D: So Parking Runoff Area=22,018 sf 49.11% Impervious Runoff Depth=2.20"

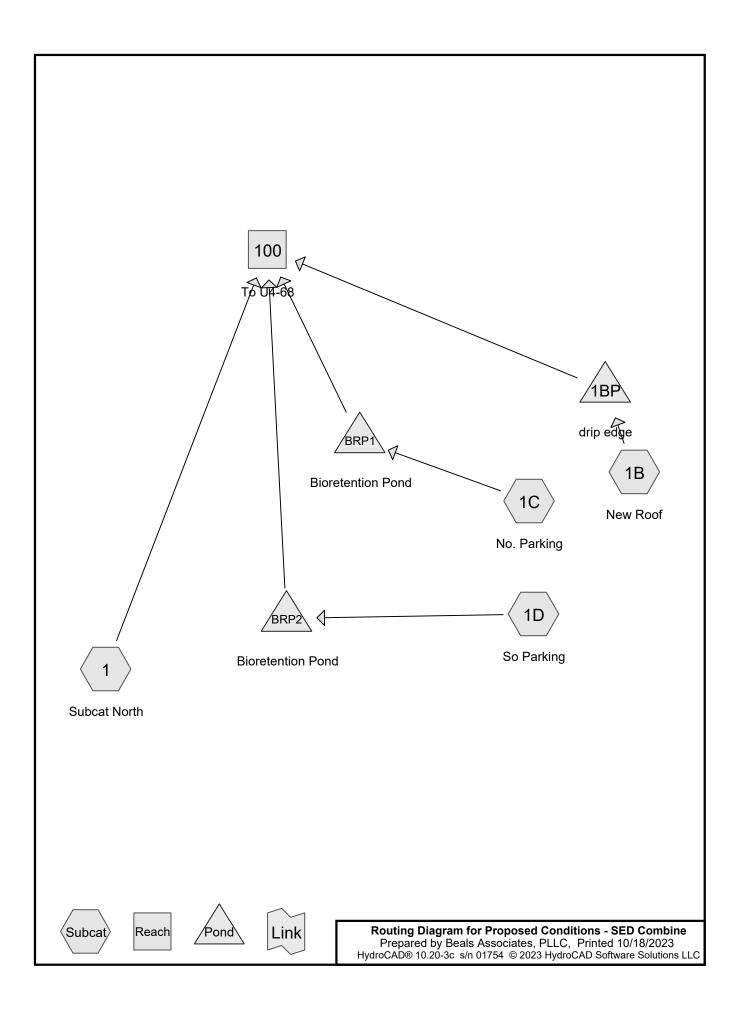
Flow Length=61' Tc=11.4 min CN=86 Runoff=1.09 cfs 0.093 af

Reach100: To U4-68 Inflow=6.90 cfs 0.832 af

Outflow=6.90 cfs 0.832 af

Pond 1BP: drip edge Peak Elev=51.01' Storage=640 cf Inflow=0.72 cfs 0.055 af

Discarded=0.04 cfs 0.047 af Primary=0.66 cfs 0.009 af Outflow=0.71 cfs 0.055 af


Pond BRP1: BioretentionPond Peak Elev=50.36' Storage=821 cf Inflow=0.57 cfs 0.042 af

Discarded=0.06 cfs 0.042 af Primary=0.00 cfs 0.000 af Outflow=0.06 cfs 0.042 af

Pond BRP2: BioretentionPond Peak Elev=50.72' Storage=1,495 cf Inflow=1.09 cfs 0.093 af

Discarded=0.14 cfs 0.093 af Primary=0.00 cfs 0.000 af Outflow=0.14 cfs 0.093 af

Total Runoff Area = 8.360 ac Runoff Volume = 1.013 af Average Runoff Depth = 1.45" 90.33% Pervious = 7.552 ac 9.67% Impervious = 0.808 ac

242 South Main St. Newmarket Type III 24-hr 10-Yr Rainfall=5.50" Printed 10/18/2023

Prepared by Beals Associates, PLLC HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions LLC

Page 2

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1: SubcatNorth Runoff Area=325,014 sf 3.07% Impervious Runoff Depth=2.77"

Flow Length=860' Tc=26.1 min CN=74 Runoff=14.53 cfs 1.722 af

Subcatchment B: New Roof Runoff Area=9,146 sf 92.37% Impervious Runoff Depth=5.03"

Tc=6.0 min CN=96 Runoff=1.12 cfs 0.088 af

Subcatchment C: No. Parking Runoff Area=7,993 sf 74.58% Impervious Runoff Depth=4.58"

Tc=6.0 min CN=92 Runoff=0.93 cfs 0.070 af

Subcatchment1D: So Parking Runoff Area=22,018 sf 49.11% Impervious Runoff Depth=3.94"

Flow Length=61' Tc=11.4 min CN=86 Runoff=1.92 cfs 0.166 af

Reach100: To U4-68 Inflow=15.25 cfs 1.776 af

Outflow=15.25 cfs 1.776 af

Pond 1BP: drip edge Peak Elev=51.01' Storage=641 cf Inflow=1.12 cfs 0.088 af

Discarded=0.04 cfs 0.058 af Primary=1.08 cfs 0.030 af Outflow=1.12 cfs 0.088 af

Pond BRP1: BioretentionPond Peak Elev=50.81' Storage=1,276 cf Inflow=0.93 cfs 0.070 af

Discarded=0.08 cfs 0.064 af Primary=0.23 cfs 0.006 af Outflow=0.31 cfs 0.070 af

Pond BRP2: BioretentionPond Peak Elev=51.51' Storage=2,597 cf Inflow=1.92 cfs 0.166 af

Discarded=0.19 cfs 0.148 af Primary=0.45 cfs 0.018 af Outflow=0.64 cfs 0.166 af

Total Runoff Area = 8.360 ac Runoff Volume = 2.046 af Average Runoff Depth = 2.94" 90.33% Pervious = 7.552 ac 9.67% Impervious = 0.808 ac

Prepared by Beals Associates, PLLC

HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions LLC

Page 3

Summary for Subcatchment 1: Subcat North

Runoff = 14.53 cfs @ 12.38 hrs, Volume= 1.722 af, Depth= 2.77"

Routed to Reach 100: To U4-68

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.50"

Aı	rea (sf)	CN [Description						
	8,285	98 F	98 Paved roads w/curbs & sewers, HSG C						
	1,703	98 F	Roofs, HSG C						
	72,577	74 >	·75% Gras	s cover, Go	ood, HSG C				
1	43,557	70 V	Voods, Go	od, HSG C					
	98,892	77 V	<u>Voods, Go</u>	od, HSG D					
3	25,014		74 Weighted Average						
3	15,026	S	6.93% Pei	vious Area					
	9,988	3	3.07% Impe	ervious Are	a				
_				_					
Tc	Length	Slope			Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
11.2	50	0.0250	0.07		Sheet Flow, Sheet				
					Woods: Light underbrush n= 0.400 P2= 3.24"				
12.6	397	0.0110	0.52		Shallow Concentrated Flow, SC to VPD				
					Woodland Kv= 5.0 fps				
2.3	413	0.0072	3.03	94.50	Channel Flow, To Anal. pnt				
					Area= 31.2 sf Perim= 51.0' r= 0.61'				
					n= 0.030 Earth, grassed & winding				
26.1	860	Total							

Summary for Subcatchment 1B: New Roof

Runoff = 1.12 cfs @ 12.08 hrs, Volume= 0.088 af, Depth= 5.03"

Routed to Pond 1BP: drip edge

6.0

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.50"

Area (sf)	CN	Description			
8,448	98	Roofs, HSG C			
698	74	>75% Grass cover, Good, HSG C			
9,146 698 8,448		Weighted Average 7.63% Pervious Area 92.37% Impervious Area			
Tc Lengtl (min) (feet					

Prepared by Beals Associates, PLLC

HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions LLC

Page 4

Summary for Subcatchment 1C: No. Parking

Runoff = 0.93 cfs @ 12.08 hrs, Volume=

0.070 af, Depth= 4.58"

Routed to Pond BRP1: Bioretention Pond

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.50"

A	rea (sf)	CN	Description			
	5,961	98	Paved parking, HSG C			
	2,032	74	>75% Grass cover, Good, HSG C			
	7,993	92	Weighted A	verage		
	2,032		25.42% Pervious Area			
	5,961		74.58% Impervious Area			
Tc	Length	Slop	e Velocity	Capacity	Description	
(min)	(feet)	(ft/f1	,	(cfs)	2 coonpact	
6.0					Direct Entry, Direct	

Summary for Subcatchment 1D: So Parking

Runoff = 1.92 cfs @ 12.15 hrs, Volume=

0.166 af, Depth= 3.94"

Routed to Pond BRP2: Bioretention Pond

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.50"

	Α	rea (sf)	CN I	Description			
		2,864	98 Paved roads w/curbs & sewers, HSG C				
		7,950	98 I	Paved parking, HSG C			
		11,204	74	•			
	22,018 86 Weighted Average			Neighted A	verage		
	11,204 50.89% Pervious Area			50.89% Pe	rvious Area	i e e e e e e e e e e e e e e e e e e e	
		10,814	4	19.11% Imp	pervious Ar	ea	
				-			
	Tc	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	11.2	50	0.0090	0.07		Sheet Flow, SHEET	
						Grass: Dense n= 0.240 P2= 3.24"	
	0.2	11	0.0120	0.77		Shallow Concentrated Flow, SC TO POND	
						Short Grass Pasture Kv= 7.0 fps	
-	11.4	61	Total			·	

Prepared by Beals Associates, PLLC

HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions LLC

Page 5

Summary for Reach 100: To U4-68

Inflow Area = 8.360 ac, 9.67% Impervious, Inflow Depth = 2.55" for 10-Yr event

15.25 cfs @ 12.38 hrs, Volume= Inflow 1.776 af

1.776 af, Atten= 0%, Lag= 0.0 min Outflow 15.25 cfs @ 12.38 hrs, Volume=

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Pond 1BP: drip edge

Inflow Area = 0.210 ac, 92.37% Impervious, Inflow Depth = 5.03" for 10-Yr event

1.12 cfs @ 12.08 hrs. Volume= Inflow = 0.088 af

1.12 cfs @ 12.09 hrs, Volume= Outflow 0.088 af, Atten= 0%, Lag= 0.3 min

Discarded = 0.04 cfs @ 9.61 hrs, Volume= 0.058 af 1.08 cfs @ 12.09 hrs, Volume= Primary = 0.030 af

Routed to Reach 100: To U4-68

Invert

Volume

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 51.01'@ 12.09 hrs Surf.Area= 638 sf Storage= 641 cf

Flood Elev= 51.10' Surf.Area= 638 sf Storage= 664 cf

Plug-Flow detention time=79.1 min calculated for 0.088 af (100% of inflow) Center-of-Mass det. time=79.1 min (839.2 - 760.2)

#1	48.50'	664 cf	Custom Stage	Data (Prismatid)is	ted below (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
48.50 51.10	638 638	0.0 40.0	0 664	0 664	

Avail.Storage Storage Description

Device	Routing	Invert	Outlet Devices
#1	Discarded	48.50'	3.000 in/hr Exfiltration over Surface area Phase-In= 0.01'
#2	Primary	51.00'	190.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlowMax=0.04 cfs @ 9.61 hrs HW=48.53' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.04 cfs)

Primary OutFlowMax=0.85 cfs @ 12.09 hrs HW=51.01' (Free Discharge) **2=Broad-Crested Rectangular Wei**(Weir Controls 0.85 cfs @ 0.33 fps)

Prepared by Beals Associates, PLLC

HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions LLC

Page 6

Summary for Pond BRP1: Bioretention Pond

Inflow Area = 0.183 ac, 74.58% Impervious, Inflow Depth = 4.58" for 10-Yr event

Inflow = 0.93 cfs @ 12.08 hrs, Volume= 0.070 af

Outflow = 0.31 cfs @ 12.36 hrs, Volume= 0.070 af, Atten= 66%, Lag= 16.8 min

Discarded = 0.08 cfs @ 12.36 hrs, Volume= 0.064 af Primary = 0.23 cfs @ 12.36 hrs, Volume= 0.006 af

Routed to Reach 100: To U4-68

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 50.81'@ 12.36 hrs Surf.Area= 1,148 sf Storage= 1,276 cf

Flood Elev= 51.00' Surf.Area= 1,264 sf Storage= 1,507 cf

Plug-Flow detention time=178.9 min calculated for 0.070 af (100% of inflow)

Center-of-Mass det. time=178.9 min (958.7 - 779.8)

Volume	Invert	Avail.Storage	Storage Description
#1	46.75'	1,083 cf	Custom Stage Data (Prismatic)isted below (Recalc)
#2	49.00'	424 cf	Custom Stage Data (Prismatic)isted below (Recalc)

1,507 cf Total Available Storage

Elevation	Surt.Area	Voids	Inc.Store	Cum.Store
(feet)	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)
46.75	219	0.0	0	0
47.75	219	40.0	88	88
49.25	219	30.0	99	186
51.00	806	100.0	897	1,083

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
49.00	13	0	0
50.00	188	101	101
51.00	458	323	424

Device	Routing	Invert	Outlet Devices
#1	Primary	50.75'	6.0' long x 3.0' breadth Broad-Crested Rectangular Weir
	·		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50 4.00 4.50
			Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68 2.72
			2.81 2.92 2.97 3.07 3.32
#2	Discarded	46.75'	3.000 in/hr Exfiltration over Surface area Phase-In= 0.01'

Discarded OutFlowMax=0.08 cfs @ 12.36 hrs HW=50.81' (Free Discharge)

****—2=Exfiltration** (Exfiltration Controls 0.08 cfs)

Primary OutFlowMax=0.21 cfs @ 12.36 hrs HW=50.81' (Free Discharge) 1=Broad-Crested Rectangular Wei(Weir Controls 0.21 cfs @ 0.59 fps)

Prepared by Beals Associates, PLLC

HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions LLC

Page 7

Summary for Pond BRP2: Bioretention Pond

Inflow Area = 0.505 ac, 49.11% Impervious, Inflow Depth = 3.94" for 10-Yr event

Inflow = 1.92 cfs @ 12.15 hrs, Volume= 0.166 af

Outflow = 0.64 cfs @ 12.52 hrs, Volume= 0.166 af, Atten= 67%, Lag= 22.3 min

Discarded = 0.19 cfs @ 12.52 hrs, Volume= 0.148 af Primary = 0.45 cfs @ 12.52 hrs, Volume= 0.018 af

Routed to Reach 100: To U4-68

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 51.51'@ 12.52 hrs Surf.Area= 2,763 sf Storage= 2,597 cf Flood Elev= 51.90' Surf.Area= 4,617 sf Storage= 3,965 cf

Plug-Flow detention time=120.8 min calculated for 0.166 af (100% of inflow)

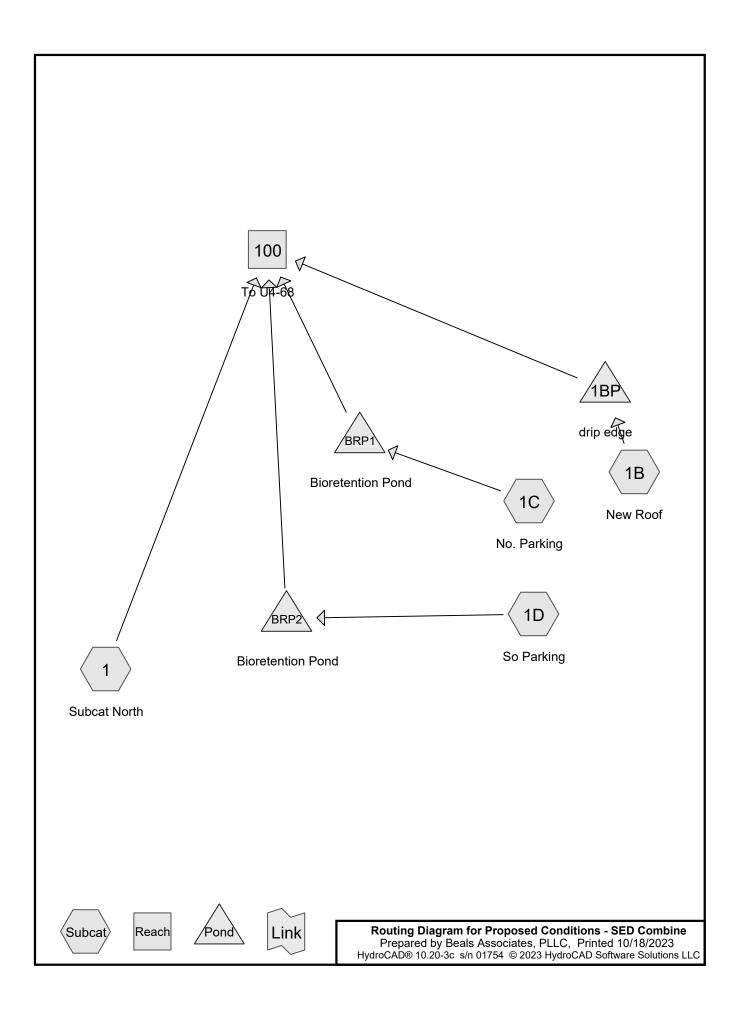
Center-of-Mass det. time=120.8 min (926.7 - 805.9)

Volume	Invert	Avail.Storage	Storage Description
#1	48.83'	2,783 cf	Custom Stage Data (Prismatic)isted below (Recalc)
#2	49.00'	1,182 cf	Custom Stage Data (Prismatic)isted below (Recalc)

3,965 cf Total Available Storage

Elevation	Surf.Area	Voids	Inc.Store	Cum.Store
(feet)	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)
48.83	1,583	0.0	0	0
49.83	1,583	40.0	633	633
51.33	1,583	30.0	712	1,346
51.50	1,986	100.0	303	1,649
51.90	3.682	100.0	1.134	2.783

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
49.00	53	0	0
50.00	276	165	165
51.50	745	766	930
51.80	935	252	1,182


Device	Routing	Invert	Outlet Devices
#1	Primary	50.00'	15.0" Round Culvert
	•		L= 45.0' CPP, mitered to conform to fill, Ke= 0.700
			Inlet / Outlet Invert= 50.00' / 49.77' S= 0.0051'/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf
#2	Device 1	51.40'	15.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Discarded	48.83'	3.000 in/hr Exfiltration over Surface area Phase-In= 0.01'

Discarded OutFlowMax=0.19 cfs @ 12.52 hrs HW=51.51' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.19 cfs)

Primary OutFlowMax=0.45 cfs @ 12.52 hrs HW=51.51' (Free Discharge)

¹⁼Culvert (Passes 0.45 cfs of 4.58 cfs potential flow)

²⁼Orifice/Grate (Weir Controls 0.45 cfs @ 1.07 fps)

242 South Main St. Newmarket Type III 24-hr 25-Yr Rainfall=6.99" Printed 10/18/2023

Prepared by Beals Associates, PLLC HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions LLC

Page 6

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1: SubcatNorth Runoff Area=325,014 sf 3.07% Impervious Runoff Depth=4.03"

Flow Length=860' Tc=26.1 min CN=74 Runoff=21.21 cfs 2.508 af

Subcatchment B: New Roof Runoff Area=9,146 sf 92.37% Impervious Runoff Depth=6.51"

Tc=6.0 min CN=96 Runoff=1.43 cfs 0.114 af

Subcatchment C: No. Parking Runoff Area=7,993 sf 74.58% Impervious Runoff Depth=6.04"

Tc=6.0 min CN=92 Runoff=1.21 cfs 0.092 af

Subcatchment1D: So Parking Runoff Area=22,018 sf 49.11% Impervious Runoff Depth=5.36"

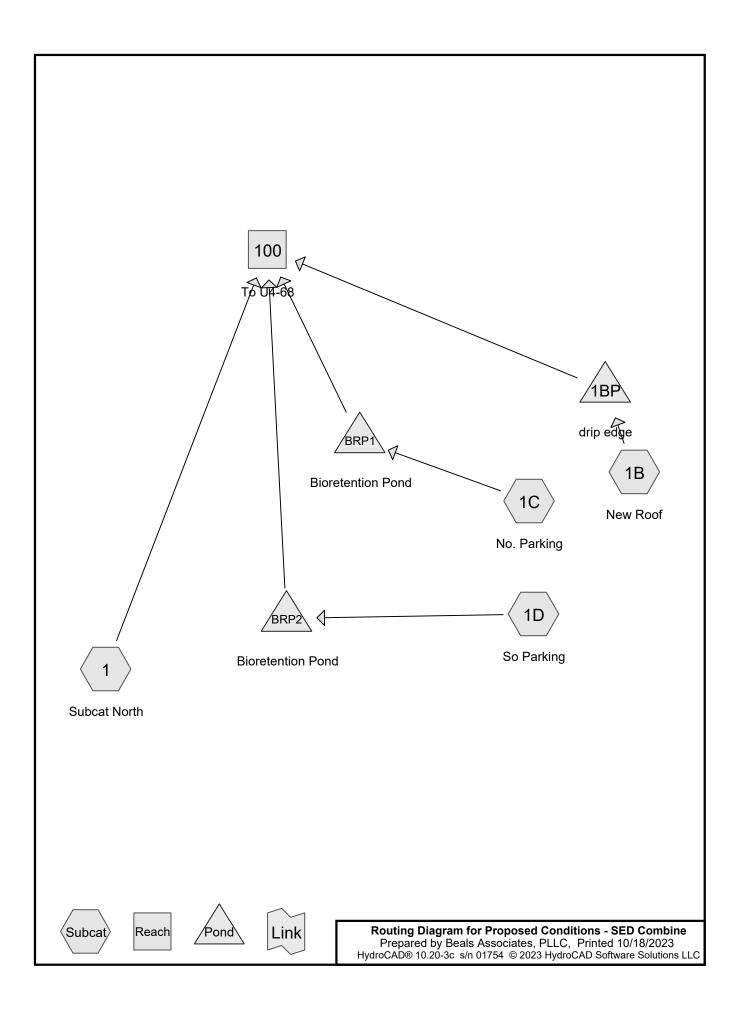
Flow Length=61' Tc=11.4 min CN=86 Runoff=2.58 cfs 0.226 af

Reach100: To U4-68 Inflow=23.29 cfs 2.630 af

Outflow=23.29 cfs 2.630 af

Pond 1BP: drip edge Peak Elev=51.02' Storage=642 cf Inflow=1.43 cfs 0.114 af

Discarded=0.04 cfs 0.065 af Primary=1.38 cfs 0.049 af Outflow=1.43 cfs 0.114 af


Pond BRP1: BioretentionPond Peak Elev=50.88' Storage=1,363 cf Inflow=1.21 cfs 0.092 af

Discarded=0.08 cfs 0.072 af Primary=0.73 cfs 0.020 af Outflow=0.81 cfs 0.092 af

Pond BRP2: BioretentionPond Peak Elev=51.61' Storage=2,910 cf Inflow=2.58 cfs 0.226 af

Discarded=0.23 cfs 0.172 af Primary=1.24 cfs 0.053 af Outflow=1.47 cfs 0.226 af

Total Runoff Area = 8.360 ac Runoff Volume = 2.940 af Average Runoff Depth = 4.22" 90.33% Pervious = 7.552 ac 9.67% Impervious = 0.808 ac

242 South Main St. Newmarket Type III 24-hr 50-Yr Rainfall=8.38" Printed 10/18/2023

Prepared by Beals Associates, PLLC HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions LLC

Page 7

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1: SubcatNorth Runoff Area=325,014 sf 3.07% Impervious Runoff Depth=5.27"

Flow Length=860' Tc=26.1 min CN=74 Runoff=27.63 cfs 3.275 af

Subcatchment B: New Roof Runoff Area=9,146 sf 92.37% Impervious Runoff Depth=7.90"

Tc=6.0 min CN=96 Runoff=1.72 cfs 0.138 af

Subcatchment C: No. Parking Runoff Area=7,993 sf 74.58% Impervious Runoff Depth=7.42"

Tc=6.0 min CN=92 Runoff=1.46 cfs 0.113 af

Subcatchment1D: So Parking Runoff Area=22,018 sf 49.11% Impervious Runoff Depth=6.70"

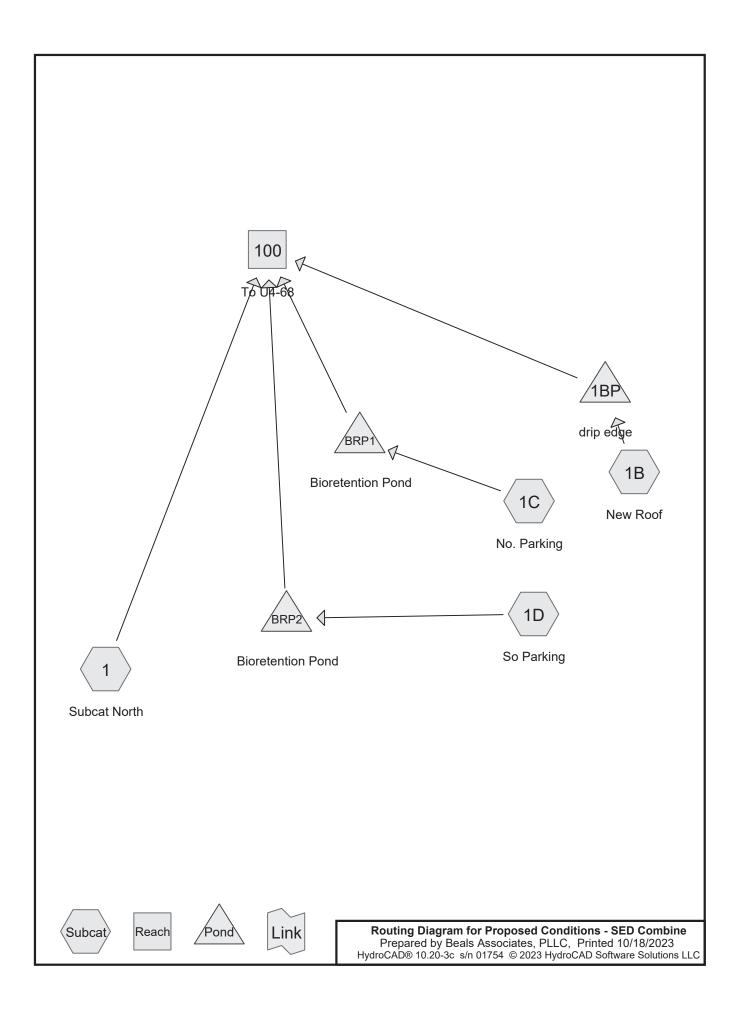
Flow Length=61' Tc=11.4 min CN=86 Runoff=3.19 cfs 0.282 af

Reach100: To U4-68 Inflow=30.56 cfs 3.467 af

Outflow=30.56 cfs 3.467 af

Pond 1BP: drip edge Peak Elev=51.02' Storage=643 cf Inflow=1.72 cfs 0.138 af

Discarded=0.04 cfs 0.071 af Primary=1.67 cfs 0.067 af Outflow=1.72 cfs 0.138 af


Pond BRP1: BioretentionPond Peak Elev=50.94' Storage=1,430 cf Inflow=1.46 cfs 0.113 af

Discarded=0.09 cfs 0.079 af Primary=1.21 cfs 0.034 af Outflow=1.29 cfs 0.113 af

Pond BRP2: BioretentionPond Peak Elev=51.69' Storage=3,200 cf Inflow=3.19 cfs 0.282 af

Discarded=0.26 cfs 0.192 af Primary=2.05 cfs 0.091 af Outflow=2.30 cfs 0.282 af

Total Runoff Area = 8.360 ac Runoff Volume = 3.809 af Average Runoff Depth = 5.47" 90.33% Pervious = 7.552 ac 9.67% Impervious = 0.808 ac

Prepared by Beals Associates, PLLC

242 South Main St. Newmarket Type III 24-hr 100 Yr Rainfall=10.06" Printed 10/18/2023

HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions LLC

Page 8

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1: SubcatNorth Runoff Area=325,014 sf 3.07% Impervious Runoff Depth=6.80"

Flow Length=860' Tc=26.1 min CN=74 Runoff=35.51 cfs 4.230 af

Subcatchment B: New Roof Runoff Area=9,146 sf 92.37% Impervious Runoff Depth=9.58"

Tc=6.0 min CN=96 Runoff=2.07 cfs 0.168 af

Subcatchmentl C: No. Parking Runoff Area=7,993 sf 74.58% Impervious Runoff Depth=9.09"

Tc=6.0 min CN=92 Runoff=1.77 cfs 0.139 af

Subcatchment1D: So Parking Runoff Area=22,018 sf 49.11% Impervious Runoff Depth=8.34"

Flow Length=61' Tc=11.4 min CN=86 Runoff=3.93 cfs 0.351 af

Reach100: To U4-68 Inflow=39.34 cfs 4.512 af

Outflow=39.34 cfs 4.512 af

Pond 1BP: drip edge Peak Elev=51.02' Storage=644 cf Inflow=2.07 cfs 0.168 af

Discarded=0.04 cfs 0.077 af Primary=2.02 cfs 0.091 af Outflow=2.06 cfs 0.168 af

Pond BRP1: BioretentionPond Peak Elev=50.97' Storage=1,473 cf Inflow=1.77 cfs 0.139 af

Discarded=0.09 cfs 0.087 af Primary=1.57 cfs 0.052 af Outflow=1.66 cfs 0.139 af

Pond BRP2: BioretentionPond Peak Elev=51.77' Storage=3,504 cf Inflow=3.93 cfs 0.351 af

Discarded=0.28 cfs 0.212 af Primary=2.92 cfs 0.139 af Outflow=3.20 cfs 0.351 af

Total Runoff Area = 8.360 ac Runoff Volume = 4.888 af Average Runoff Depth = 7.02" 90.33% Pervious = 7.552 ac 9.67% Impervious = 0.808 ac

APPENDIX III

Charts, Graphs, and Calculations

		RIF	RAP	CALCULA	TIONS			
				cted Develo				
				uex Builders				
				St., Newmarl				
				sociates, P				
				mouth Ave	enue			
·			Stra	atham, NH				
Rip Rap equations were ob	tained from	the NH	Stormwo	ater Manua	ıl			
Rip Rap was sized for the	10 year storn	n event (5.5").					
TAILWATER < HALF T								
$La = (1.8 \times Q) / Do 3/2 + (1.8 \times Q)$	7 x Do) Q		0=	Peak Flow	& Do is Di	iameter of Pir	20	
W = La + 3Do or defined c	_ / ~		Q -	cak Piow	& D0 IS D1	ameter of Fig	je	
$d50 = (0.02 \times Q4/3) / (Tw)$		Tw = Ts	ailwater	Depth				
T = Largest stone size of d		T= Thic						
8				tone Size (0	0.25' Min.)			
Culvert or	Tail Water						A -4 .1	T1 ' 1
Catch Basin	(Feet)			Rip Rap			Actual	Thicknes
(Sta. No.)	Tw	Q Q	Do	La (feet)	W (feet)	Rip Rap (0.25 Min)	Rip Rap (Feet)	of Apron (Feet)
							(- (-)	(2 500)
15" HDPE (Pond #BRP2)	1.00	0.86	1.25	9.9	13.6	0.01	0.25	0.56
Table 7-24 Recommended Rip 150 Size =		n Ranges Feet	3	Inches	0.5	Feet	6	Inches
% of Weight Smaller			f Stone (I		0.5		of Stone (Inc	
Γhan the Given d50 Size		From		То		From		То
100%		5		6		9		12
85%		4		5		8		11
50%		3		5		6		9
15%		1		2		2		3

GROUNDWATER RECHARGE VOLULME (GRV) CALCULATION (Env-Wq 1507.04)

	ac	Area of HSG A soil that was replaced by impervious cover	0.40"
;	ac	Area of HSG B soil that was replaced by impervious cover	0.25"
0.51	ac	Area of HSG C soil that was replaced by impervious cover	0.10"
á	ac	Area of HSG D soil or impervious cover that was replaced by impervious cover	0.0"
0.10 in	ches	Rd = Weighted groundwater recharge depth	
0.0513 ac	:-in	GRV = AI * Rd	
186 cf		GRV conversion (ac-in x 43,560 sf/ac x 1ft/12")	

Wq 1507.04):
4,791 cf of stomrwater is infiltrated by the bioretention pond alone under a 2-YR storm event.

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

Type/Node Name: Bioretention pond/BRP1

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable.

yes		Check if you reviewed the restrictions on unlined systems outlined in Env-Wq 1508.	07(a).
	3_ac	A = Area draining to the practice	
	ac	A _I = Impervious area draining to the practice	
	decimal	I = Percent impervious area draining to the practice, in decimal form	
	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
	ac-in	WQV= 1" x Rv x A	
478	-	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
119		25% x WQV (check calc for sediment forebay volume)	
358		75% x WQV (check calc for surface sand filter volume)	
	orebay	_ Method of Pretreatment? (not required for clean or roof runoff)	
162		V _{SED} = Sediment forebay volume, if used for pretreatment	≥ 25%WQV
		n if system IS NOT underdrained:	
219	_sf _	A _{SA} = Surface area of the practice	
3.00	_iph	Ksat _{DESIGN} = Design infiltration rate ¹	
		If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	
	Yes/No	(Use the calculations below)	
8.7	hours	$T_{DRAIN} = Drain time = V / (A_{SA} * I_{DESIGN})$	≤ 72-hrs
Calculate t	ime to draiı	n if system IS underdrained:	
	ft	E _{WQV} = Elevation of WQV (attach stage-storage table)	
	- cfs	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)	
	hours	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$	< 72-hrs
			372783
47.75	-	E_{FC} = Elevation of the bottom of the filter course material ²	
	feet	E_{UD} = Invert elevation of the underdrain (UD), if applicable	
46.75	-0.		
	feet	E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p	it)
44.00	-	E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p	
	feet	E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test	pit)
44.00	feet feet	E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC \text{ to UD}}$ = Depth to UD from the bottom of the filter course	pit) ≥ 1'
44.00 47.75	feet feet feet	E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC \text{ to } NDC}$ = Depth to UD from the bottom of the filter course $D_{FC \text{ to } ROCK}$ = Depth to bedrock from the bottom of the filter course	pit) ≥1' ≥1'
44.00 47.75 3.75 1.00	feet feet feet feet	E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test problem E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC \text{ to } ND}$ = Depth to UD from the bottom of the filter course $D_{FC \text{ to } ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to } SHWT}$ = Depth to SHWT from the bottom of the filter course	pit) ≥ 1'
44.00 47.75 3.75	feet feet feet feet ft	E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test problem E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test D_{FC to UD} = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis)	pit) ≥1' ≥1'
44.00 47.75 3.75 1.00 50.95	feet feet feet feet ft	E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test problem Erock = Elevation of bedrock (if none found, enter the lowest elevation of the test of DFC to UD = Depth to UD from the bottom of the filter course $D_{FC \text{ to ROCK}}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to SHWT}}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice	pit) ≥1' ≥1' ≥1'
44.00 47.75 3.75 1.00 50.95 51.00 YES	feet feet feet feet ft ft	E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test problems Erock = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC \text{ to UD}}$ = Depth to UD from the bottom of the filter course $D_{FC \text{ to ROCK}}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to SHWT}}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice	pit) ≥1' ≥1'
44.00 47.75 3.75 1.00 50.95 51.00 YES	feet feet feet feet ft ft	E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test problem Erock = Elevation of bedrock (if none found, enter the lowest elevation of the test of DFC to UD = Depth to UD from the bottom of the filter course $D_{FC \text{ to ROCK}}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to SHWT}}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice	pit) ≥ 1' ≥ 1' ≥ 1' < yes
44.00 47.75 3.75 1.00 50.95 51.00 YES	feet feet feet ft ft sand filter	E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test problem Erock = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC \text{ to UD}}$ = Depth to UD from the bottom of the filter course $D_{FC \text{ to ROCK}}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to SHWT}}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice E_{CO} =	pit) ≥ 1' ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac
44.00 47.75 3.75 1.00 50.95 51.00 YES	feet feet feet ft ft sand filter ac cf	E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test possible E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC \text{ to } UD}$ = Depth to UD from the bottom of the filter course $D_{FC \text{ to } ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to } SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice E_{CO} =	pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV
44.00 47.75 3.75 1.00 50.95 51.00 YES	feet feet feet ft ft sand filter	E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test problem Erock = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC \text{ to UD}}$ = Depth to UD from the bottom of the filter course $D_{FC \text{ to ROCK}}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to SHWT}}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice E_{CO} =	pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV 18", or 24" if
44.00 47.75 3.75 1.00 50.95 51.00 YES	feet feet feet ft ft sand filter ac cf inches	E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test possible E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC \text{ to } UD}$ = Depth to UD from the bottom of the filter course $D_{FC \text{ to } ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to } SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. $V = Volume \text{ of storage}^3$ (attach a stage-storage table) $D_{FC} = Filter \text{ course thickness}$	pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV
44.00 47.75 3.75 1.00 50.95 51.00 YES If a surface YES	feet feet feet ft ft sand filter ac cf inches	E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test possible E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC \text{ to } UD}$ = Depth to UD from the bottom of the filter course $D_{FC \text{ to } ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to } SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice E_{CO} =	pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV 18", or 24" if

If a biorete	ention area	is proposed:	
YES	ac	Drainage Area no larger than 5 ac?	← yes
995	cf	V = Volume of storage ³ (attach a stage-storage table)	> WQV
18.0	inches	D _{FC} = Filter course thickness	18", or 24" if within GPA
Sheet	8	Note what sheet in the plan set contains the filter course specification	
3.0		Pond side slopes	<u>> 3</u> :1
Sheet	8	Note what sheet in the plan set contains the planting plans and surface cover	_
If porous pa	avement is	proposed:	
		Type of pavement proposed (Concrete? Asphalt? Pavers? Etc.)	
	acres	A _{SA} = Surface area of the pervious pavement	
	:1	Ratio of the contributing area to the pervious surface area	≤ 5:1
	inches	D _{FC} = Filter course thickness	12", or 18" if
			within GPA
Sheet		Note what sheet in the plan set contains the filter course spec.	mod. 304.1 (see spec)

- 1. Rate of the limiting layer (either the filter course or the underlying soil). Ksat_{design} includes factor of safey. See Env-Wq 1504.14 for guidance on determining the infiltration rate.
- 2. See lines 34, 40 and 48 for required depths of filter media.
- 3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

· · · · · · · · · · · · · · · · · · ·		

NHDES Alteration of Terrain

Designer's Notes:

Last Revised: January 2019

Proposed Conditions

Prepared by Beals Associates, PLLC

HydroCAD® 10.20-2g s/n 01754 © 2022 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 1CP: SED Pond

Elevation (feet)	Surface	Storage
Hevation (feet) 49.00 49.05 49.10 49.15 49.20 49.25 49.30 49.45 49.40 49.45 49.60 49.65 49.70 49.75 49.80 49.85 49.90 50.05 50.10 50.15 50.20 50.25 50.30 50.35 50.40 50.45 50.50 50.65 50.70 50.75 50.80 50.85 50.90 50.95 51.00 51.15 51.20 51.25 51.30 51.45 51.50	Surface (sq-ft) 13 22 31 39 48 57 65 74 83 92 101 109 118 127 136 144 153 162 170 179 188 201 215 228 242 256 269 283 296 310 323 336 350 363 377 391 404 418 431 445 458 458 458 458 458 458 458 458 458	Storage (cubic-feet) 0 11 2 4 6 9 12 15 19 24 28 34 39 45 52 59 66 74 83 91 101 110 121 132 144 156 169 183 197 212 228 245 262 280 298 317 337 358 379 401 424 424 424 424 424 424 424 424 424 42

Proposed Conditions

Prepared by Beals Associates, PLLC

HydroCAD® 10.20-2g s/n 01754 © 2022 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond BRP1: Bioretention Pond

Elevation	Surface	Ctorono	I Flancking		
(feet)	(sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface	Storage
46.75	219	0	49.35	(sq-ft) 253	(cubic-feet)
46.80	219	4	49.40	269	210
46.85	219	9	49.45	286	223 237
46.90	219	13	49.50	303	251 251
46.95	219	18	49.55	320	267
47.00	219	22	49.60	336	283
47.05	219	26	49.65	353	301
47.10	219	31	49.70	370	319
47.15	219	35	49.75	387	338
47.20	219	39	49.80	403	357
47.25	219	44	49.85	420	378
47.30	219	48	49.90	437	399
47.35	219	53	49.95	454	422
47.40 47.45	219	57	50.00	471	445
47.45 47.50	219	61	50.05	487	469
47.55 47.55	219 219	66	50.10	504	493
47.60	219	70 74	50.15	521	519
47.65	219	74 79	50.20	538	546
47.70	219	83	50.25	554 574	573
47.75	219	88	50.30 50.35	571 599	601
47.80	219	91	50.40	588 605	630
47.85	219	94	50.45	622	660
47.90	219	97	50.50	638	690 722
47.95	219	101	50.55	655	722 754
48.00	219	104	50.60	672	787
48.05	219	107	50.65	689	821
48.10	219	111	50.70	705	856
48.15	219	114	50.75	722	892
48.20	219	117	50.80	739	929
48.25	219	120	50.85	756	966
48.30	219	124	50.90	772	1,004
48.35	219	127	50.95	789	1,043
48.40 48.45	219	130	51.00	806	1,083
48.50	219 219	134			
48.55	219	137 140			
48.60	219	143			
48.65	219	147			
48.70	219	150			
48.75	219	153			
48.80	219	157			
48.85	219	160			
48.90	219	163			
48.95	219	166			
49.00	219	170			
49.05	219	173			
49.10	219	176			
49.15	219	180			
49.20	219	183			
49.25	219	186			
49.30	236	198			

INFILTRATION PRACTICE CRITERIA (Env-Wq 1508.06)

Type/Node Name: stone drip edge/1BP

Enter the type of infiltration practice (e.g., basin, trench) and the node name in the drainage analysis, if applicable.

yes	Have you reviewed Env-Wq 1508.06(a) to ensure that infiltration is allowed?	— ← yes
0.21 ac	A = Area draining to the practice	•
0.19 ac	A _I = Impervious area draining to the practice	
0.90 decimal	I = Percent impervious area draining to the practice, in decimal form	
0.86 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.18 ac-in	WQV= 1" x Rv x A	
659 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
165 cf	25% x WQV (check calc for sediment forebay volume)	
n/a	Method of pretreatment? (not required for clean or roof runoff)	
cf	V _{SED} = Sediment forebay volume, if used for pretreatment	≥ 25%WQV
664 cf	V = Volume ¹ (attach a stage-storage table)	≥ WQV
638 sf	A _{SA} = Surface area of the bottom of the pond	≥ wQv
3.00 iph	Ksat _{DESIGN} = Design infiltration rate ²	
4.1 hours	$I_{DRAIN} = Drain time = V / (A_{SA} * I_{DESIGN})$	< 72-hrs
48.50 feet	E _{BTM} = Elevation of the bottom of the basin	\$ 72-1115
47.50 feet	E _{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test	pit)
45.00 feet	EROCK = Elevation of bedrock (if none found, enter the lowest elevation of the te	st pit)
1.00 feet	D _{SHWT} = Separation from SHWT	≥* ³
3.5 feet	D _{ROCK} = Separation from bedrock	
ft	D _{amend} = Depth of amended soil, if applicable due high infiltation rate	<u>></u> * 3
ft ft	D_T = Depth of trench, if trench proposed	<u>≥</u> 24"
Yes/No	· ·	4 - 10 ft
Tes/NO	If a trench or underground system is proposed, has observation well been provi	A
Voc/No	If a trench is proposed, does materialmeet Env-Wq 1508.06(k)(2) requirements.	-
Yes/No :1	If a basin is proposed, is the perimeter curvilinear, and basin floor flat?	← yes
	If a basin is proposed, pond side slopes.	≥3:1
51.01 ft	Peak elevation of the 10-year storm event (infiltration can be used in analysis)	
51.02 ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis)	
51.10 ft	Elevation of the top of the practice (if a basin, this is the elevation of the berm)	
YES	10 peak elevation ≤ Elevation of the top of the trench? ⁵	← yes
YES	If a basin is proposed, 50-year peak elevation ≤ Elevation of berm?	← yes
4. Maliana halan H.		

- 1. Volume below the lowest invert of the outlet structure and excludes forebay volume
- 2. Ksat_{DESIGN} includes a factor of safety. See Env-Wq 1504.14 for requirements for determining the infiltr. rate
- 3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.
- 4. Clean, washed well graded diameter of 1.5 to 3 inches above the in-situ soil.
- 5. If 50-year peak elevation exceeds top of trench, the overflow must be routed in HydroCAD as secondary discharge.

Designer's Notes:	

Proposed Conditions

Prepared by Beals Associates, PLLC

HydroCAD® 10.20-2g s/n 01754 © 2022 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 1BP: drip edge

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
48.50	638	0	51.10	638	664
48.55	638	13			
48.60	638	26	1		
48.65	638	38			
48.70	638	51			
48.75	638	64			
48.80	638	77			
48.85	638	89			
48.90	638	102			
48.95	638	115			
49.00	638	128			
49.05	638	140			
49.10	638	153			
49.15	638	166			
49.20	638	179.			
49.25	638	191			
49.30	638	204			
49.35	638	217			
49.40	638	230			
49.45	638	242			
49.50	638	255			
49.55	638	268			
49.60	638	281			
49.65	638				
49.70	638	293			
49.75	638	306			
49.80	638	319			
49.85	638	332			
49.90		345			
49.95	638	357			
	638	370			
50.00	638	383			
50.05 50.10	638	396			
50.10	638	408			
50.15	638	421			
50.20	638	434			
50.25	638	447			
50.30	638	459			
50.35	638	472			
50.40	638	485			
50.45	638	498			
50.50	638	510			
50.55	638	523			
50.60	638	536			
50.65	638	549			
50.70	638	561			
50.75	638	574			
50.80	638	587			
50.85	638	600			
50.90	638	612			
50.95	638	625			
51.00	638	638			
51.05	638	651			
		1			

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

Type/Node Name:

Bioretention pond/BRP2

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable.

yes	_	Check if you reviewed the restrictions on unlined systems outlined in Env-Wq 1508.	07(a).
	ac	A = Area draining to the practice	
	ac	A _I = Impervious area draining to the practice	
	decimal	I = Percent impervious area draining to the practice, in decimal form	
	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
	ac-in	WQV= 1" x Rv x A	
876	_	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
219		25% x WQV (check calc for sediment forebay volume)	
657		75% x WQV (check calc for surface sand filter volume)	
	orebay	_Method of Pretreatment? (not required for clean or roof runoff)	
583		V _{SED} = Sediment forebay volume, if used for pretreatment	<u>></u> 25%WQV
		n if system IS NOT underdrained:	
1,583	_sf _	A _{SA} = Surface area of the practice	
3.00	_iph	Ksat _{DESIGN} = Design infiltration rate ¹	
	_	If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	
	Yes/No	(Use the calculations below)	
2.2	hours	$T_{DRAIN} = Drain time = V / (A_{SA} * I_{DESIGN})$	≤ 72-hrs
Calculate t	ime to drair	if system IS underdrained:	
	ft	E _{WQV} = Elevation of WQV (attach stage-storage table)	
	cfs	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)	
	hours	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$	<u><</u> 72-hrs
49.83	feet	E_{FC} = Elevation of the bottom of the filter course material ²	
	feet	E_{UD} = Invert elevation of the underdrain (UD), if applicable	
48.83	- feet	E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p	it)
46.00	feet	E _{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test	
49.83	feet	$D_{FC \text{ to UD}} = Depth \text{ to UD from the bottom of the filter course}$	≥ 1'
3.83	feet	D _{FC to ROCK} = Depth to bedrock from the bottom of the filter course	≥1'
		- FC to ROCK - 5 Part to be direct from the bottom of the little course	
1.00	teet	Dro. sweet = Depth to SHWT from the bottom of the filter course	
	feet	D _{FC to SHWT} = Depth to SHWT from the bottom of the filter course Peak elevation of the 50 year storm event (infiltration can be used in a set of the set)	 ≥1'
51.74	ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis)	
	ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice	≥1'
51.74 51.90 YES	ft ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation ≤ Elevation of the top of the practice	
51.74 51.90 YES	ft ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation ≤ Elevation of the top of the practice or underground sand filter is proposed:	≥ 1' ← yes
51.74 51.90 YES If a surface	ft ft sand filter	Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation ≤ Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check.	≥ 1'
51.74 51.90 YES If a surface	ft ft sand filter ac cf	Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation ≤ Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage ³ (attach a stage-storage table)	≥ 1' ← yes < 10 ac ≥ 75%WQV
51.74 51.90 YES If a surface	ft ft sand filter	Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation ≤ Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check.	≥ 1' ← yes < 10 ac ≥ 75%WQV 18", or 24" if
51.74 51.90 YES If a surface	ft ft sand filter ac cf	Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation ≤ Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage ³ (attach a stage-storage table) D _{FC} = Filter course thickness	≥ 1' ← yes < 10 ac ≥ 75%WQV
51.74 51.90 YES If a surface YES	ft ft sand filter ac cf inches	Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation ≤ Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage ³ (attach a stage-storage table)	≥ 1' ← yes < 10 ac ≥ 75%WQV 18", or 24" if

If a biorete	ention area	is proposed:	
YES	ac	Drainage Area no larger than 5 ac?	← yes
898	_cf	V = Volume of storage ³ (attach a stage-storage table)	≥ WQV
18.0	inches	D _{FC} = Filter course thickness	18", or 24" if within GPA
Sheet	. 8	Note what sheet in the plan set contains the filter course specification	
3.0	1:1	Pond side slopes	> 3:1
Sheet	. 8	Note what sheet in the plan set contains the planting plans and surface cover	
If porous p	avement is	proposed:	
1		Type of pavement proposed (Concrete? Asphalt? Pavers? Etc.)	
	acres	A _{SA} = Surface area of the pervious pavement	
	:1	Ratio of the contributing area to the pervious surface area	≤ 5:1
	inches	D _{FC} = Filter course thickness	12", or 18" if
	-		within GPA
Sheet		Note what sheet in the plan set contains the filter course spec.	mod. 304.1 (see spec)

- 1. Rate of the limiting layer (either the filter course or the underlying soil). Ksat_{design} includes factor of safey. See Env-Wq 1504.14 for guidance on determining the infiltration rate.
- 2. See lines 34, 40 and 48 for required depths of filter media.

Designer's Notes:

NHDES Alteration of Terrain

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

		_

Last Revised: January 2019

Proposed Conditions

Prepared by Beals Associates, PLLC

HydroCAD® 10.20-2g s/n 01754 © 2022 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 1DP: SED Pond

		,	4		
Elevation (feet)	Surface	Storage	Elevation	Surface	Storage
49.00	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
49.05	53 64	0	51.60	808	1,008
49.10	75	3 6	51.65	840	1,049
49.15	75 86		51.70	872	1,092
49.20	98	10	51.75	903	1,136
49.25	109	15	51.80	935	1,182
49.30	120	20 26			
49.35	131	32			
49.40	142	39			
49.45	153	46			
49.50	165	54			
49.55	176	63			
49.60	187	72			
49.65	198	82			
49.70	209	92			
49.75	220	102			
49.80	231	114			
49.85	243	126			
49.90	254	138			
49.95	265	151			
50.00	276	165			
50.05	292	179			
50.10	307	194			
50.15	323	209			
50.20	339	226			
50.25	354	243			
50.30	370	261			
50.35	385	280	1		
50.40	401	300			
50.45	417	320			
50.50 50.55	432	342			
50.60	448 464	364			
50.65	479	386 410			
50.70	495	434			
50.75	511	459			
50.80	526	485			
50.85	542	512			
50.90	557	540			
50.95	573	568			
51.00	589	597			
51.05	604	627			
51.10	620	657			
51.15	636	689			
51.20	651	721			
51.25	667	754			
51.30	682	788			
51.35	698	822			
51.40	714	857			
51.45 51.50	729 745	893			
51.50 51.55	745 777	930			
51.55	///	968			

Storage (cubic-feet)

1,516 1,610 1,710 1,821 1,943 2,075 2,218 2,371 2,535 2,710

Prepared by Beals Associates, PLLC
HydroCAD® 10.20-2g s/n 01754 © 2022 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond BRP2: Bioretention Pond

	•		,	
Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)
48.83	1,583	0	51.43	1,820
48.88	1,583	32	51.48	1,939
48.93	1,583	63	51.53	2,113
48.98	1,583			
49.03		95 137	51.58	2,325
49.08	1,583	127	51.63	2,537
	1,583	158	51.68	2,749
49.13	1,583	190	51.73	2,961
49.18	1,583	222	51.78	3,173
49.23	1,583	253	51.83	3,385
49.28	1,583	285	51.88	3,597
49.33	1,583	317		
49.38	1,583	348		
49.43	1,583	380		
49.48	1,583	412		
49.53	1,583	443		
49.58	1,583	475		
49.63	1,583	507		
49.68	1,583	538		
49.73	1,583	570		
49.78	1,583	602		
49.83	1,583	633		
49.88	1,583	657		
49.93	1,583	681		
49.98	1,583	704		
50.03	1,583	728		
50.08	1,583	752		
50.13	1,583	776		
50.18	1,583	799		
50.23	1,583	823		
50.28	1,583	847		
50.33	1,583	871		
50.38	1,583	894		
50.43	1,583	918		
50.48	1,583	942		
50.53	1,583	966		
50.58	1,583	989		
50.63	1,583	1,013		
50.68	1,583	1,037		
50.73	1,583	1,061		
50.78	1,583	1,084		
50.83	1,583	1,108		
50.88	1,583	1,132		
50.93	1,583	1,156		
50.98	1,583	1,179		
51.03 51.08	1,583	1,203		
	1,583	1,227		
51.13 51.19	1,583	1,251		
51.18 51.23	1,583	1,274		
51.23 51.28	1,583	1,298		
51.26	1,583 1,583	1,322		
51.38	1,583	1,346		
51.50	1,702	1,428		

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Metadata for Point

Smoothing State

Yes

Location

Latitude 43.074 degrees North Longitude 70.951 degrees West

Elevation 10 feet

Date/Time

Thu May 18 2023 09:06:35 GMT-0400 (Eastern Daylight Time)

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.26	0.40	0.50	0.65	0.82	1.04	1yr	0.70	0.98	1.21	1.56	2.01	2.63	2.85	1yr	2.33	2.74	3.14	3.86	4.46	1yr
2yr	0.32	0.49	0.61	0.81	1.02	1.29	2yr	0.88	1.17	1.50	1.92	2.45	3.15	3.49	2yr	2.79	3.36	3.86	4.59	5.23	2yr
5yr	0.37	0.58	0.72	0.97	1.23	1.59	5yr	1.07	1.45	1.86	2.40	3.09	4.00	4.48	5yr	3.54	4.31	4.92	5.83	6.60	5yr
10yr	0.41	0.64	0.81	1.10	1.43	1.86	10yr	1.23	1.70	2.20	2.85	3.69	4.79	5.42	10yr	4.24	5.21	5.93	6.99	7.87	10yr
25yr	0.47	0.75	0.95	1.31	1.74	2.29	25yr	1.50	2,11	2.73	3.57	4.66	6.08	6.96	25yr	5.38	6.70	7.57	8.90	9.95	25yr
50yr	0.52	0.84	1.08	1,50	2.03	2.70	50yr	1.75	2.48	3.22	4.24	5.57	7.29	8.43	50yr	6.46	8.10	9.11	10.68	11.88	50yr
100yr	0.59	0.95	1.23	1.73	2.36	3.17	100yr	2.03	2.92	3.81	5.04	6.65	8.75	10.20	100yr	7.74	9.81	10.97	12.82	14.20	100yr
200yr	0.65	1.07	1.39	1.99	2.75	3.74	200yr	2.37	3.44	4.51	6.01	7.95	10.49	12.35	200yr	9.29	11.87	13.21	15.41	16.98	200yr
500yr	0.77	1.27	1.66	2.40	3.37	4.63	500yr	2.91	4.28	5.61	7.54	10.06	13.35	15.90	500yr	11.82	15.29	16.90	19.65	21.52	500yr

Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.24	0.37	0.45	0.61	0.74	0.90	1yr	0.64	0.88	0.93	1.25	1.54	2.08	2.51	1yr	1.84	2,42	2.89	3,32	3.95	1yr
2yr	0.32	0.49	0.60	0.81	1.00	1.18	2yr	0.87	1.16	1.37	1.82	2.35	3.04	3.41	2yr	2.69	3.28	3.76	4.47	5.02	2yr
5yr	0.35	0.54	0.67	0.92	1.17	1.40	5yr	1.01	1.37	1.62	2.14	2.77	3.73	4.16	5yr	3.30	4.00	4.59	5.48	6.17	5yr
10yr	0.39	0.59	0.74	1.03	1.33	1.61	10yr	1.15	1.57	1.82	2.44	3.12	4.30	4.83	10yr	3.81	4.64	5.33	6.37	7.09	10vr
25yr	0.44	0.68	0.84	1.20	1.58	1.93	25yr	1.36	1.88	2.11	2.83	3.64	4.87	5.87	25vr	4.31	5,64	6.49	7.76	8.66	25yr
50yr	0.49	0.75	0.93	1.34	1.80	2.21	50yr	1.55	2.16	2.36	3.19	4.09	5.53	6.78	50yr	4.90	6.52	7.53	9.01	9.99	50yr
100yr	0.55	0.83	1.04	1.50	2.06	2.53	100yr	1.78	2.48	2.64	3.57	4.58	6.27	7.84	100vr	5,55	7.54	8.74	10.46	11.50	100vr
200yr	0.61	0.92	1.17	1.69	2.36	2.90	200yr	2.03	2.84	2.94	4.00	5.13	7.09	9.35	200vr	6.27	8.99	10.15	12.14	13.27	200yr
500yr	0.72	1.07	1.37	1.99	2.83	3.50	500yr	2.45	3.42	3.40	4.64	5.99	8.31	11.40	500yr	7.35	10.96	12.38	14.79	15.97	500yr

Upper Confidence Limits

**																					
	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		lday	2day	4day	7day	10day	
1yr	0.28	0.43	0.53	0.71	0.88	1.08	1yr	0.76	1.05	1.25	1.73	2.19	2.88	3.05	1yr	2.55	2.93	3.46	4.20	4.88	1yr
2yr	0.33	0.51	0.63	0.85	1.04	1.25	2yr	0.90	1.22	1.48	1.95	2.49	3.32	3.59	2yr	2.93	3.45	3.97	4.74	5.49	2yr
5yr	0.39	0.61	0.76	1.04	1.32	1.59	5yr	1.14	1.55	1.86	2.48	3.17	4.27	4.81	5yr	3.78	4.63	5.28	6.20	7.02	5vr
10yr	0.46	0.71	0.88	1.23	1.59	1.93	10yr	1.37	1.89	2.24	3.03	3.81	5.29	6.02	10yr	4.69	5.79	6.57	7.64	8.61	10vr
25yr	0.56	0.86	1.07	1.53	2.01	2.50	25yr	1.73	2.44	2.88	3.93	4.88	7.32	8.10	25yr	6.48	7.79	8.76	10.10	11.16	25yr
50yr	0.65	1.00	1.24	1.78	2.40	3.02	50yr	2.07	2.95	3.50	4.78	5.90	9.12	10.17	50yr	8.07	9.78	10.91	12.48	13.69	50vr
100yr	0.77	1.16	1.45	2.09	2.87	3.65	100yr	2.48	3.57	4.25	5.85	7.15	11.36	12.76	100yr	10.06	12.27	13.58	15.43	16.80	100vr
200yr	0.89	1.34	1.70	2.46	3.43	4,44	200yr	2.96	4.34	5.18	7.14	8.65	14.21	15.60	200yr	12.57	15.00	16.91	19.08	20.64	200vr
500yr	1.09	1.63	2.09	3.04	4.33	5.71	500yr	3.73	5.58	6.70	9.33	11.14	19.10	20.98	500yr	16,91	20.17	22.60	25.31	-	500vr

Other			courty over gravelly	coppily loanly sand		loamy over sanovorave	loanly over sandy	single grain, loose	silt loam	gravelly sandy loam in Cd	strata of fine sand		fine sandy loam	channery silt loam in Cd	sandy loam	organic over clay		loamy cap	silly ciay loarn	by ai mool	door organia	organic over eiff	Sifty Clay	and one		less than 20 in. deep	loam in Cd	loamy over loamy sand	20 to 40 in. deep	deep organic			fine sandy loam	20 to 40 in. deep	mwd to swod	hamilton sili loam in Ca	organic over sand		loam in Cd		gravelly surface	single grain in C	thin strata sity clay loam	single grain in C	rine sandy loam in Cd	Sill loam, plany in C	Web change	Very Granting y	20 to 40 in. deep			
Spodosol	~	F	2 6	2 00			eas in	Sa.	†	1	2	2	+	OL :	01 5	2	2 6	2 6	2 2	2 2	2 2	2 2	9	02	Q.				02	90	2	2	2	2 :	+	200			yes	yes	yes	+	+	+	yes		1	2 2	yes	92	92	
Soil Textures		namy over candy chalotal	sandy-ekaletal	Sandy	loamy over candy	Camy over candy	de la constantina della consta	Salla	loainy	loamy	silty	loamy	loamy	loamy	fine	2011	sandy-skeletal	fine	amed	oamo	Sabric	loamy	fine	loamy	coarse sand	loamy-skeletal	loamy	loamy over sandy	loamy	sapric	gravelly sand	Silty	loamy	loamy	Compo	loamy over sandy	sandy or sandy-skeletal	co. loamy over sandy (skeletal)	loamy	sandy-skeletal	sandy-skeletal	sandy	SIITY	Sendy	Camy	sandy-skeletal	loamy	sandy over loamy	loamy	loamy over clayey	loamy over clayey	
Temp.		frigid	mesic	frigid	mesic	frioid	frioid	frieid	Fringia Fringia	Digital	mesic	cylc	Digital Straight	Frinid	frioin frioin	moei.	frinid	mesic	frigid	frigid	frigid	frigid	frigid	frigid	mesic	frigid	frigid	mesic	mesic	mesic	Digit.	mgra	mesic	meeir	frinid	frigid	frigid	П	\neg	frigid	e e	Ligid	mesic	frigid	frigid	frioid	mesic	mesic	frigid	mesic	frigid	
Land Form		Outwash and Stream Terraces	Loose till, sandy textures	Outwash and Stream Terraces	Friable till sige schiet & phullips	Firm plate condustil	Torrocce and alocial late alaine	l'erraces and glacial faxe plains	Fillin, plany, loamy till	Firm plate eith fill sohist 8 phulita	Loose till Loomy tochinge	Sift and Clay Deposite	Terraces and clacial lake plains	Outwash and Stream Terraces	Silt and Clay Denosits	Firm, platy, silty till, schist & phyllite	Firm, platy, loamy till	Organic Materials - Freshwater	Firm, platy, sifty till, schist & phylitte	Silt and Clay Deposits	Firm, platy, silty till, schist & phyllite	Outwash and Stream Terraces	Weathered Bedrock Till	Firm, platy, loamy till	Loose till, sandy textures	Friable till, sifty, schist & phyllite	Organic Materials - Freshwater	Cutwash and Stream Terraces	Flood Plain (Bottom Land)	Loose till, loainy textures	Loose till hedrock	Firm, platy, sity till, schist & phyllite	Loose till, sandy textures	Organic Materials - Freshwater	Flood Plain (Bottom Land)	Firm, platy, loamy till	Outwash and Stream Terraces	Outwash and Stream Jerraces	Tomoso and similal late in the	Ontweet and Street Terreson	Firm platy loamy till	Friable till, sitv. schist & phyllite	Outwash and Stream Terraces	Friable till, sifty, schist & phyllite	Sandy/loamy over silt/clay	Friable till, silty, schist & phyllite	Sandy/loamy over sitt/clay	Sandy/loamy over sit/clay				
Group		2	3	-	2	2	2	~	67	0 00	2 10	, ,	4 6	,	9	LC)	-	6	2	က	9	9	Ī		-	4	9	7	4 0	-	- 4	, ,	4	· 60	က		9	ı,	en •	-	-	2 6	9 67		6	3	2	က	4	6	က	
Hyd.	Grp.	В	8	<	8	m	8		C	0	٥	0 00	C			۵	4	O	ပ	၁	٥	۵	O		4	٥	ء د	•	٩			2 00	9	m	O	В	۵	o i	U «	< <	ζ α	0 00	000	0	O	8	80	ပ	8	٥	O	
Ksat high - C	in/hr	0.66	20.0	99.0	100.0	20.0		2.0	0.6	20	0.0	80	0.2	6.0	0.2	0.2	100.0	0.2	9.0	0.2		0.2	0.2	0.2	100.0	20.0	9.0	20.0	2.0	1000	100.0	090	6.0	0.0	0.2	6.0	20.0	100.0	9.00	100.0	100.0	0.6	100.0	9.0	2.0	20.0	2.0	9.0	2.0	0.2	0.2	
Ksat low - C	ln/hr	6.00	2.00	20.00	20.00	6.00		09.0	0.06	90'0	000	0.60	0.06	0.60	0.00	90.0	20.00	00:00	90.0	90.0		0.02	0.00	90:0	20.00	2.00	90.0	0.00	8 .	20.00	090	090	0.60	09'0	0.02	2.00	0.00	0.60	90.00	20.00	20.00	0.06	20.00	0.06	0.60	00.9	09:0	0.06	0.60	0.00	0.00	
Ksat high - B	in/hr	2.0	20.0	20.0	20.0	2.0		2.0	2.0	2.0	0.2	6.0	2.0	0.9	0.2	2.0	20.0	0.2	2.0	2.0		6.0	9.0	2.0	100.0	20.0	2.0	2.0	2.7	20.0	100.0	6.0	6.0	6.0	2.0	2.0		2.0	20.0	200	100.0	2.0	20.0	2.0	2.0	20.0	2.0	20.0	2.0	0.9	0.0	
Ksat low - B	in/hr	9.0	2.0	0.9	0.9	9.0		9.0	0.6	9.0	9.0	9.0	9.0	9.0	0.0	0.2	6.0	0.1	9.0	9.0		0.2	0.1	9.0	20.0	2.0	0.0	0.6		6.0	0.6	9.0	9.0	9.0	9.0	9.0		9.0	0.0	09	20.0	9.0	6.0	9.0	9.0	6.0	9.0	6.0	9.0	2.0	7.0	
egend	number	501	146	98	24	127	516	572	28	532	224	72	330	226	234	534	220	32	240	237	895	134	232	286	970	188	42	357	296	35	509	62	68	289	126	442	385	202	22	21	613	132	313	378	578	413	386	38	128	220	920	
Soil Series		Abenaki	Acton	Adams	Agawam	Allagash	Au Gres	Bangor	Becket	Beigrade	Bemis	Berkshire	Bernardston	Bice	Biddeford	Binghamville	Boscawen	Boxford	Brayton	Buckland	Bucksport	Bumham	Buxton	Capor	Caesar	Carterbury	Canton	Cardinan	Catden	Champlain	Charles	Charlton	Chatfield	Chatfield Var.	Chesuncook	Chichester	Chocorua	Colonel	Colton	Colton, gravelly	Croghan	Dartmouth	Deerfield	Dixfield	Dixmont	Duane	Dutchess	Eldridge	Elmotidos	Elminosod	Divolu	

GOVE ENVIRONMENTAL SERVICES, INC.

TEST PIT DATA

Project

242 South Main Street, Newmarket, NH

Client

D.R. Lemeiux Builders, LLC

GES Project No. 2022280

MM/DD/YY Staff

04-10-2023

1

James Gove, CSS#004

Test Pit No.

ESHWT::

Soils Series:

Eldridge Flat

Termination @

26" 60" Landscape: Slope:

Α

Refusal:

None

Parent Material:

Sand over silt

Obs. Water: None Ksat (above ESHWT):

6 in/hr.

Horizon A 0-10" Color (Munsell) 10YR3/2

Texture loamy sand Structure-Consistence-Redox granular-friable-none

Bw 10-26" B/C 26-48"

Cd 48-60"

10YR4/4 10YR4/3

2.5Y5/2

loamy sand loamy fine sand

silty clay loam

granular-friable-none massive-friable-2.5Y5/3 blocky-firm-7.5YR5/8

Hydrologic Soil Group of this Eldridge soil test pit is C.

Test Pit No. ESHWT::

2 24"

Soils Series: Landscape:

Eldridge Flat

Termination @

60"

Slope:

Α

Refusal: Obs. Water: None 59"

Parent Material:

Sand over silt

Ksat (above ESHWT): 6 in/hr.

Horizon A 0-13"

Bw 13-24"

B/C 24-31"

Cd 31-60"

Color (Munsell) 10YR3/2 10YR4/4

10YR4/3

2.5Y5/2

Texture

loamy sand loamy sand loamy fine sand

silty clay loam

Structure-Consistence-Redox

granular-friable-none granular-friable-none massive-friable-2.5Y5/3

blocky-firm-7.5YR5/8

Hydrologic Soil Group of this Eldridge soil test pit is C.

Test Pit No. 3
ESHWT:: 15"
Termination @ 60"
Refusal: None
Obs. Water: 46"

Slope:
Parent Material:
Ksat (above ESF

Soils Series:

Landscape:

A Sand over silt

Eldridge

Flat

Ksat (above ESHWT): 6 in/hr.

Horizon Color (Munsell) A 0-8" 10YR3/2 Bw 8-15" 10YR4/6 B/C 15-30" 10YR4/6 Cd 30-60" 2.5Y5/2

Texture loamy sand loamy sand loamy fine sand silty clay loam Structure-Consistence-Redox granular-friable-none granular-friable-none massive-friable-2.5Y5/3 blocky-firm-7.5YR5/8

Hydrologic Soil Group of this Eldridge soil test pit is C.

Test Pit No.4ESHWT::30"Termination @60"Refusal:NoneObs. Water:30"

Soils Series: Landscape: Slope:

Eldridge Flat A

Parent Material: Ksat (above ESHWT): Sand over silt 6 in/hr.

 Horizon
 Color (Munsell)
 Texture

 A 0-12"
 10YR3/2
 loamy sand

 E 12-24"
 2.5Y7/2
 loamy sand

 Bhs 24-30"
 7.5YR4/6
 loamy fine sand

 Cd 30-60"
 2.5Y5/2
 silty clay loam

Structure-Consistence-Redox granular-friable-none granular-friable-none massive-friable-none blocky-firm-7.5YR5/8

Hydrologic Soil Group of this Eldridge soil test pit is C.

BMP Type	BMP 1,2,3,4,5,6,7	Notes	Lit. Ref.		epted for Load	ing Analyses
Dini Type	Wet Pond	110103	B.F	TSS 70%	TN 35%	TP 45%
	Wet Extended		A.B	80%	55%	68%
	Detention Pond		A,D	00%	20%	00%
Stormwater Ponds	Micropool Extended Detention Pond	TBA				
	Multiple Pond System	TBA				
	Pocket Pond	TBA				
	Shallow Wetland	IDA	A,B,F,I	80%	55%	45%
	Extended Detention		A,B,F,I	80%	55%	45%
Stormwater Wetlands	Wetland		11,2,11			
Wedands	Pond/Wetland System	TBA				
	Gravel Wetland		Н	95%	85%	64%
	Infiltration Trench (≥75 ft from surface water)		B,D,I	90%	55%	60%
Infiltration Practices	Infiltration Trench (<75 ft from surface water)		B,D,I	90%	10%	60%
illimitation i racices	Infiltration Basin (>75 ft from surface water)		A,F,B,D,I	90%	60%	65%
	Infiltration Basin (<75 ft		AEDD!	000	400	0F9/
	from surface water)		A,F,B,D,I	90%	10%	65%
	Dry Wells Drip Edges			90% 90%	55% 55%	60% 60%
	Aboveground or			80.78	3376	0076
	Underground Sand Filter that infiltrates WQV (≥75 ft from surface water)		A,F,B,D,I	90%	60%	65%
	Aboveground or Underground Sand Filter that infiltrates WQV (<75 ft from surface water)		A,F,B,D,I	90%	10%	65%
	Aboveground or Underground Sand Filter with underdrain		A,I,F,G,H	85%	10%	45%
	Tree Box Filter	TBA	1011	90%	65%	65%
Filtering Practices	Bioretention System Permeable Pavement that infiltrates WQV (≥75 ft from surface water)		I,G,H A,F,B,D,I	90%	60%	65%
	Permeable Pavement that infiltrates WQV (<75 ft from surface water)		A,F,B,D,I	90%	10%	65%
	Permeable Pavement with underdrain		Use TN and TP values for sand filter w/ underdrain and outlet pipe	90%	10%	45%
Treatment Swales	Flow Through Treatment Swale	TBA				
Vegetated Buffers	Vegetated Buffers		A,B,I	73%	40%	45%
	Sediment Forebay	TBA				
	Vegetated Filter Strip ⁸		A,B,I	73%	40%	45%
	Vegetated Swale		A,B,C,F,H,I	65%	20%	25%
Pre-Treatment	Flow-Through Device - Hydrodynamic Separator		A,B,G,H	35%	10%	5%
Practices	Flow-Through device - ADS Underground Multichamber Water Quality Unit (WQU)		G,H	72%	10%	9%
	Other Flow-Through Devices	TBA				
	Off-line Deep Sump Catch Basin		J,K,L,M	15%	5%	5%