
DRAINAGE ANALYSIS & SEDIMENT AND EROSION CONTROL PLAN Prepared for: DR LEMIEUX BUILDERS, INC. 76 EXETER ROAD NEWMARKET, NH 03857

Prepared by:

BEALS ASSOCIATES, *PLLC* 70 PORTSMOUTH AVENUE STRATHAM, NH 03885

Project Number: NH-1449 242 South Main Street Newmarket, New Hampshire

May 23, 2023 Revised 8-22-23

DESIGN METHOD OBJECTIVES

DR Lemieux Builders is proposing a 32-unit age-restricted multi-family residential development on approximately 7.22-acres of land located at 242 So. Main St.in Newmarket, NH. The existing property is located on a parcel (Tax Map U4, Lot 69) consisting of forest, a single-family house and mowed fields. The development will include: on-site underground electric, telephone & cable; municipal water and sewer; and Low Impact Development/BMP storm water management and treatment. Proper erosion controls will be proposed where construction could result in sediment transport for the development. A drainage analysis of the proposed development including a proposed subdivided lot from the parent parcel was conducted for the purpose of estimating the peak rate of stormwater run-off and to subsequently design adequate drainage structures. Two models were compiled, one for the area in its existing (pre-construction) condition, and a second for its proposed (post-construction) condition. The analysis was conducted using data for the 1", 2Yr, 10Yr, 25Yr and 50Yr – 24 Hr storm (100Yr storm for pond evaluation) events using the USDA SCS TR-20 method within the HydroCAD Stormwater Modeling System environment. As Newmarket is in the defined coastal region by NHDES, a factor of 15% Has been added to the 24 Hr rainfall values as provided by the Northeast Regional Climate Center at Cornell University. The purpose of this analysis is to estimate the peak rates of run-off from the site for swale adequacy purposes, and to compare the peak rate of run-off between the existing and proposed conditions.

ANALYSIS POINT COMPONENT PEAK RATE of DISCHARGE (CFS)

Reach	100								
2 1	Ϋ́R	10	YR	25	YR	50	YR	100Y	(R
Existing	Proposed	Existing	Proposed	Existing	Proposed	Existing	Proposed	Existing	Proposed
7.59	6.90	16.32	16.20	23.87	23.74	31.01	30.86	39.65	39.54
<u>Analys</u> <u>Reach</u>	Stormwater Volume (AF) <u>Analysis Point</u> <u>Reach 100</u>								
2 Y	R	10	YR	25 Y	′R	50Y	R	100Y	(R
Existing 0.929	Proposed 0.834	Existing 1.934	Proposed 1.813	Existing 2.812	Proposed 2.674	Existing 3.675	Proposed 3.516	Existing 4.732	Proposed 4.566

The existing property is located on a parcel (Tax Map U4, Lot 69) consisting of wetlands, forest, a single-family house and mowed fields. The existing topography is such that the site analysis is a single analysis point reach. The reach flows offsite to the north-northwest through the parcel and ultimately flows into a large wetland system that ultimately drains toward the Piscassic River.

The proposed 32-unit development includes 220'+/- of proposed private driveway that intersects So Main Street. The proposed layout will divide the parcel into 4 different subcatchments. The peak rate of run-off from the proposed development is slightly decreased from that of the existing conditions. The addition of culverts, bioretention ponds, and stone roof infiltration trenches infiltrate and/or direct the cleaned run off overland to the analysis points. All roadway runoff receives treatment through a bioretention ponds and the natural buffer prior to discharge. In addition, the potential for increased erosion and sedimentation is handled by way of riprap outlet protection and erosion control fencing/berm. The use of Best Management Practices per the NH Stormwater Manual have been applied to the design of these structures and will be

observed during all stages of construction. All land disturbed during construction will be permanently stabilized within 60 days of groundbreaking, and existing wetlands and abutters will suffer no adversity resulting from this development.

Table of Contents

Design Method Objectives

1.0	Rainfall Characteristics	Page 1
2.0	Existing Conditions Analysis	Page 1
3.0	Proposed Subdivision Analysis	Pages 1-2
4.0	Sediment & Erosion Control, BMP's	Pages 2-5
5.0	Conclusion	Page 6

Appendix I - Existing Conditions Analysis

Summary 2 YR - 24 HR rainfall = 3.62" Complete 10 YR - 24 HR rainfall = 5.50" Summary 25 YR - 24 HR rainfall = 6.99" Summary 50 YR - 24 HR rainfall = 8.38" Summary 100 YR - 24 HR rainfall = 10.06"

Sheet W-1 Existing Conditions Watershed Plan

Appendix II - Proposed Conditions Analysis

Summary 2 YR - 24 HR rainfall = 3.62" Complete 10 YR - 24 HR rainfall = 5.50" Summary 25 YR - 24 HR rainfall = 6.99" Summary 50 YR - 24 HR rainfall = 8.38" Summary 100 YR - 24 HR rainfall = 10.06"

Note: rainfall events based on information from Extreme Precipitation Tables. Sheet W-2 Proposed Conditions Watershed Plan

Appendix III - Charts, Graphs, and Calculations

1.0 RAINFALL CHARACTERISTICS

This drainage report includes an existing conditions analysis of the area involved in the proposed development, as well as proposed conditions, or post-construction analysis of the same location. These analyses were accomplished using the USDA SCS TR-20 Method within the HydroCAD Stormwater Modeling System. The curve numbers were developed using the SCS TR-55 Runoff Curve numbers for Urban Areas. A Type III SCS 24-hour rainfall distribution was utilized in analyzing the data for the 2, 10, & 50 Yr – 24 Hr storm events using the USDA SCS TR-20 method within the HydroCAD Stormwater Modeling System environment.

ANALYSIS POINT COMPONENT PEAK RATE of DISCHARGE (CFS) Reach 100

100YR 2 YR 10 YR 25 YR **50YR** Existing Proposed Existing Proposed Existing Proposed Existing Proposed 6.90 16.32 16.20 23.74 30.86 39.54 7.59 23.87 31.01 39.65 Stormwater Volume (AF) Analysis Point Reach 100 2 YR 10 YR 25 YR **50YR** 100YR Existing Proposed Existing Proposed Existing Proposed Existing Proposed 0.929 1.934 0.834 1.813 2.812 2.674 3.675 3.516 4.732 4.566

2.0 EXISTING CONDITIONS

Reference: Sheet W-1, Existing Conditions Watershed Plan (Enclosed) Existing Conditions Plan

The existing property is located on a parcel (Tax Map U4, Lot 69) consisting of wetlands, forest, a single-family house and mowed fields. The existing topography is such that the site analysis is a single analysis point reach. The reach flows offsite to the north-northwest through the parcel and ultimately flows into a large wetland system that ultimately drains toward the Piscassic River.

Classified by NRCS Mapping, the land within the drainage analysis is composed of slopes ranging from 0% to 8% +, and soils categorized into the Hydrologic Soil Groups (HSG) C & D.

3.0 PROPOSED CONDITIONS

Reference: W-Sheets Proposed Conditions Watershed Plan (Enclosed) C Sheets Proposed Conditions Plans

The addition of the impervious area from the paved roadways, and the 32 unit building for the residential units cause an increase in the curve number (Cn) and a decrease in the time of concentration (Tc), the net result being a potential increase in peak rates of run-off from the site. The proposed 32-unit development includes 220'+/- of proposed private driveway that intersects So Main Street. The proposed layout will divide the parcel into 4 different subcatchments. The peak rate of run-off from the proposed development is slightly decreased from that of the existing conditions. The addition of culverts, bioretention ponds, and stone roof infiltration

trenches infiltrate and/or direct the cleaned run off overland to the analysis points. All driveway runoff receives treatment through a bioretention ponds and the natural buffer prior to discharge. Ksat values for the infiltration rates were from SSSNNE published values with a safety factor of 2. Based on these design features and the sequencing of pretreatment and treatment BMP's, the required 80% removal of TSS and 40% removal of TN & TP will be exceeded as required by Newmarket regulations (see removal efficiency summary table in appendices). In addition, the potential for increased erosion and sedimentation is handled by way of riprap outlet protection and erosion control fencing/berm. The use of Best Management Practices per the NH Stormwater Manual have been applied to the design of these structures and will be observed during all stages of construction. All land disturbed during construction will be permanently stabilized within 60 days of groundbreaking, and existing wetlands and abutters will suffer no adversity resulting from this development.

In an effort to prevent the sedimentation of abutting property, the driveway and parking areas will convey stormwater to the bioretention ponds and overflow discharges to the natural buffer to the wetlands. During construction, appropriate BMP's will be applied so as to negate the potential for sediment-laden run-off to discharge into wetlands prior to the final stabilization of the proposed grading. The structures outlined in this proposal provide for adequate treatment of stormwater run-off for sediment control.

4.0 SEDIMENT & EROSION CONTROL PLANS BEST MANAGEMENT PRACTICES (BMP's)

The proposed site development is protected from erosion and the roadways and abutting properties are protected from sediment by the use of Best Management Practices as outlined in the <u>NH Stormwater Manual</u>. Any area disturbed by construction will be permanently restabilized within 60 days and abutting properties and wetlands will not be adversely affected by this development. All swales and drainage structures will be constructed and stabilized prior to having run-off directed to them.

4.1 Silt Fence / Construction Fence

The plan set demonstrates the location of silt fence for sediment control. In areas where the limits of construction need to be emphasized to operators, construction fence for added visibility will be installed. Erosion and Sediment Control Details have the specifications for installation and maintenance of the silt fence. Orange construction fence will be VISI Perimeter Fence by Conwed Plastic Fencing, or equal. The four-foot fencing to be installed using six-foot posts at least two feet in the ground with spacing of six to eight feet.

4.2 Drainage Swales / Stormwater Conveyance Channels

Drainage swales will be stabilized with vegetation for long term cover as outlined below using seed mixture C. As a general rule, velocities in the swale should not exceed 3.0 feet per second for a vegetated swale although velocities as high as 4.5 FPS are allowed under certain soil conditions.

4.3 Vegetated Stabilization

All areas that are disturbed during construction will be stabilized with vegetated material within 30 days of breaking ground. Construction will be managed in such a manner that erosion is prevented and that no abutter's property will be subjected to any siltation, unless otherwise permitted. All areas to be planted with grass for long-term cover will follow the specification as follows:

Mixture	Pounds	Pounds per
	per Acre	1,000 Sq. Ft.
Tall Fescue	20	0.45
Creeping Red Fescue	28	0.65
Total	48	1.10

4.4 Stabilized Construction Entrance

A temporary gravel construction entrance provides an area where mud can be dislodged from tires before the vehicle leaves the construction site to reduce the amount of mud and sediment transported onto paved municipal and state roads. The stone size for the pad should be between 1 and 2-inch coarse aggregate, and the pad itself constructed to a minimum length of 50' for the full width of the access road. The aggregate should be placed at least six inches thick.

4.5 Level Spreaders

Level spreaders enable any run-off directed towards them to be spread evenly into sheet flow prior to discharge into wetlands or treatment by a filter strip, thus allowing for better filter strip efficiency and a lesser potential for erosion.

4.6 Filter Strips

Filter strips are areas of land with natural or planted vegetation designed to receive sheet run-off from upgradient development. These natural areas, preferably wooded, are effective in removing sediment and sediment-laden pollutants from such run-off, although their effectiveness is severely diminished when forced to deal with concentrated flow and must therefore be equipped with a level-spreading device. Filter strips should not have a slope exceeding fifteen percent and have a minimum length of seventy-five feet.

4.7 Environmental Dust Control

Dust will be controlled on the site by the use of multiple Best Management Practices. Mulching and temporary seeding will be the first line of protection to be utilized where problems occur. If dust problems are not solved by these applications, the use of water and calcium chloride can be applied. Calcium chloride will be applied at a rate that will keep the surface moist but not cause pollution.

4.8 Construction Sequence

1. Construct and/or install temporary and permanent sediment erosion and detention control facilities (silt fence, vegetated swales, level spreaders, and constructed

filter strips), as required. Erosion, sediment and facilities shall be installed and stabilized prior to any earth moving operation, and prior to directing run-off to them.

- 2. Clear, cut, grub, and dispose of debris in approved facilities.
- 3. Excavate and stockpile topsoil / loam. All disturbed areas shall be stabilized immediately after grading.
- 4. Construct the roadway and its associated drainage structures.
- 5. Begin permanent and temporary seeding and mulching. All cut and fill slopes and disturbed areas shall be seeded and mulched as required, or directed.
- 6. Daily, or as required, construct temporary berms, drainage ditches, sediment traps, etc. to prevent erosion on the site and prevent any siltation of abutting waters or property.
- 7. Inspect and maintain all erosion and sediment control measures during construction every two weeks and after every storm event with 0.25" or more rain.
- 9. Complete permanent seeding and landscaping.
- 9. Remove temporary erosion control measures after seeding areas have established themselves and site improvements are complete. Smooth and re-vegetate all disturbed areas.
- 10. All swales and drainage structures will be constructed and stabilized prior to having run-off being directed to them.
- 11. Finish graveling all roadways/parking.
- 4.9 Temporary Erosion Control Measures
 - 1. The smallest practical area of land shall be exposed at any one time.
 - 2. Erosion, sediment control measures shall be installed as shown on the plans and at locations as required, or directed by the engineer.
 - 3. All disturbed areas shall be returned to original grades and elevations. Disturbed areas shall be loamed with a minimum of 4" of loam and seeded with not less than 1.10 pound of seed per 1,000 square feet (48 pounds per acre) of area.
 - 4. Silt fences and other barriers shall be inspected periodically and after every rainstorm during the life of the project. All damaged areas shall be repaired; sediment deposits shall periodically be removed and properly disposed of.

- 5. After all disturbed areas have been stabilized, the temporary erosion control measures are to be removed and the area disturbed by the removal smoothed and revegetated.
- 6. Areas must be seeded and mulched within 5 days of final grading, permanently stabilized within 15 days of final grading, or temporarily stabilized within 30 days of initial disturbance of soil.
- 4.11 Inspection and Maintenance Schedule

Fencing/erosion control berm will be inspected during and after storm events to ensure that the fence still has integrity and is not allowing sediment to pass. Sediment build-up in swales and level spreaders will be removed if it is deeper than six inches.

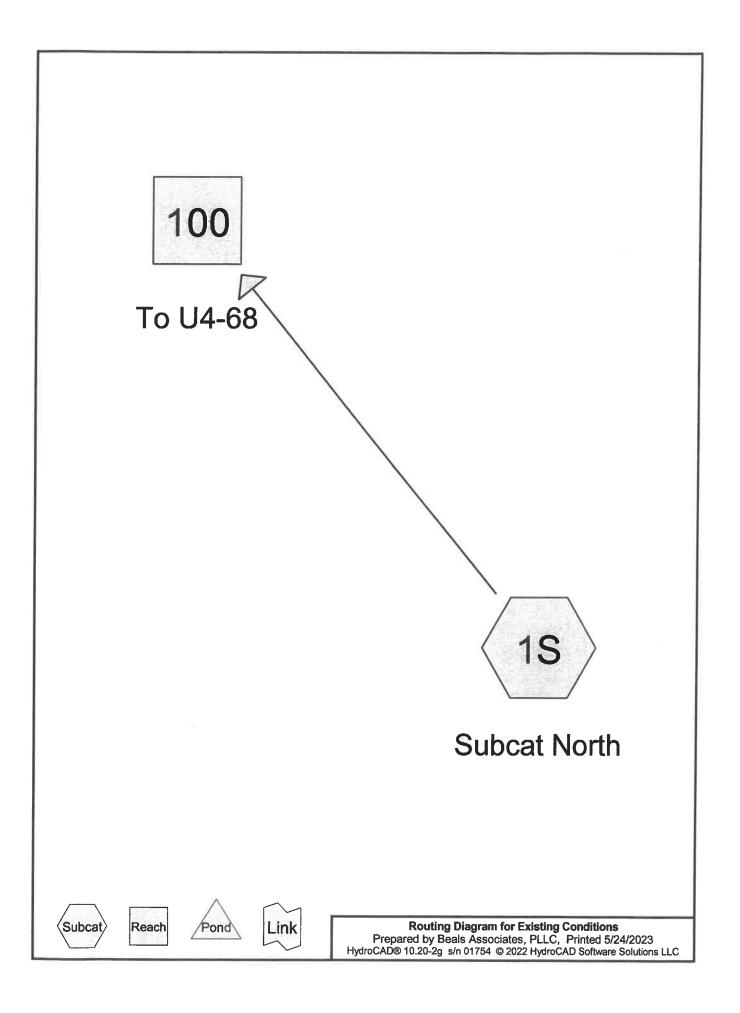
5.0 CONCLUSION

This proposed development at 242 So. Main St. in Newmarket, NH will have no adverse effect on the abutting property owners by way of storm water run-off or siltation. The postconstruction peak rate of run-off for the site has been decreased from that of the existing conditions and roadway run-off will treatment by either constructed or natural methods. Appropriate steps will be taken to eliminate erosion and sedimentation; these will be accomplished through the construction of a drainage system consisting of culverts, bioretention ponds, stone drip edges for roof infiltration, and riprap outlet protection. The Best Management Practices developed by the State of New Hampshire have been utilized in the design of this system and these applications will be enforced throughout the construction process.

A Site Specific, Terrain Alteration Permit (RSA 485: A-17) is not required for this project due to the area of disturbance being less than 100,000 square feet.

Respectfully Submitted,

BEALS ASSOCIATES, PLLC.


Christian O. Smith

Christian O. Smith, PE Principal

APPENDIX I

Existing Conditions Drainage Analysis

Summary 2 YR - 24 HR rainfall = 3.62" Complete 10 YR - 24 HR rainfall = 5.50" Summary 25 YR - 24 HR rainfall = 6.99" Summary 50 YR - 24 HR rainfall = 8.38" Summary 100 YR - 24 HR rainfall = 10.06"

Printed 5/24/2023 Page 2

Area Listing (all nodes)

Area	CN	Description
 (acres)		(subcatchment-numbers)
2.470	74	>75% Grass cover, Good, HSG C (1S)
0.256	98	Paved roads w/curbs & sewers, HSG C (1S)
0.039	98	Roofs, HSG C (1S)
3.296	70	Woods, Good, HSG C (1S)
2.270	77	Woods, Good, HSG D (1S)
8.331	74	TOTAL AREA

Existing Conditions

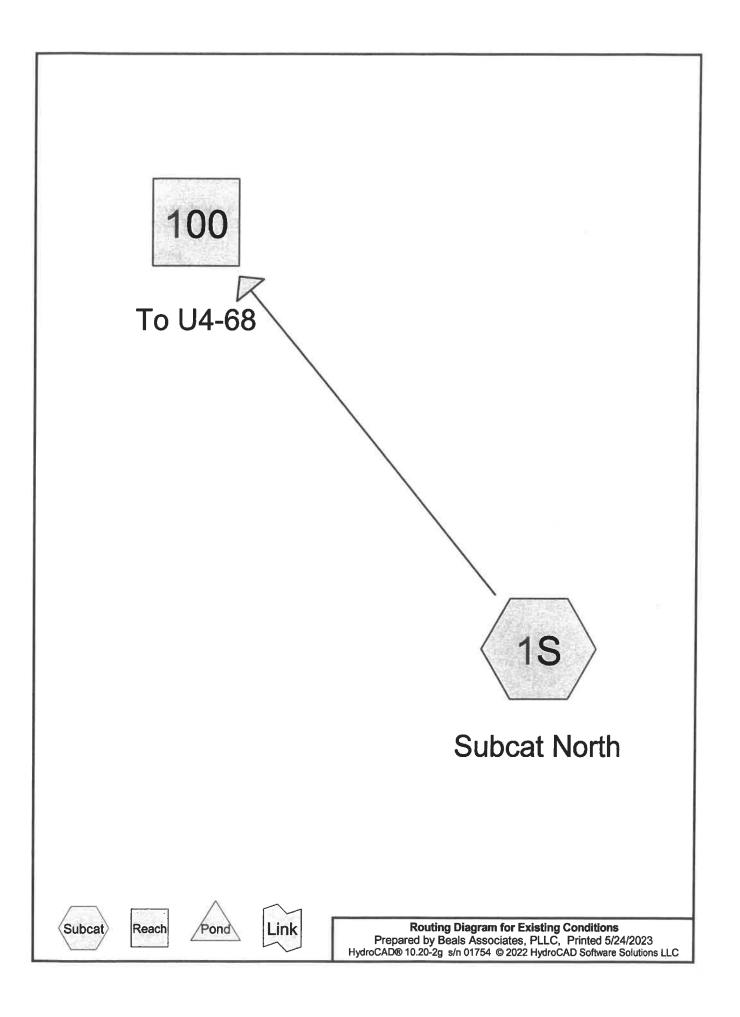
Prepared by Beals Associates, PLLC HydroCAD® 10.20-2g s/n 01754 © 2022 HydroCAD Software Solutions LLC

Printed 5/24/2023 Page 3

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
6.061	HSG C	1S
2.270	HSG D	1S
0.000	Other	
8.331		TOTAL AREA

	242 S Main - Ex Cond
Existing Conditions	Type III 24-hr 2-Yr Rainfall=3.64"
Prepared by Beals Associates, PLLC	Printed 5/24/2023
HydroCAD® 10.20-2g s/n 01754 © 2022 HydroCAD Software Solutions LL	C Page 4


Subcatchment 1S: Subcat North

Runoff Area=362,906 sf 3.54% Impervious Runoff Depth=1.34" Flow Length=860' Tc=26.1 min CN=74 Runoff=7.59 cfs 0.929 af

Reach 100: To U4-68

Inflow=7.59 cfs 0.929 af Outflow=7.59 cfs 0.929 af

Total Runoff Area = 8.331 ac Runoff Volume = 0.929 af Average Runoff Depth = 1.34" 96.46% Pervious = 8.036 ac 3.54% Impervious = 0.295 ac

		242 S Main - Ex Cond
Existing Conditions	Type III 24-hr	10-Yr Rainfall=5.52"
Prepared by Beals Associates, PLLC		Printed 5/24/2023
HydroCAD® 10.20-2g s/n 01754 © 2022 HydroCAD Software Solutions	LLC	Page 2

Subcatchment 1S: Subcat NorthRunoff Area=362,906 sf 3.54% ImperviousRunoff Depth=2.79"Flow Length=860'Tc=26.1 minCN=74Runoff=16.32 cfs 1.934 af

Reach 100: To U4-68

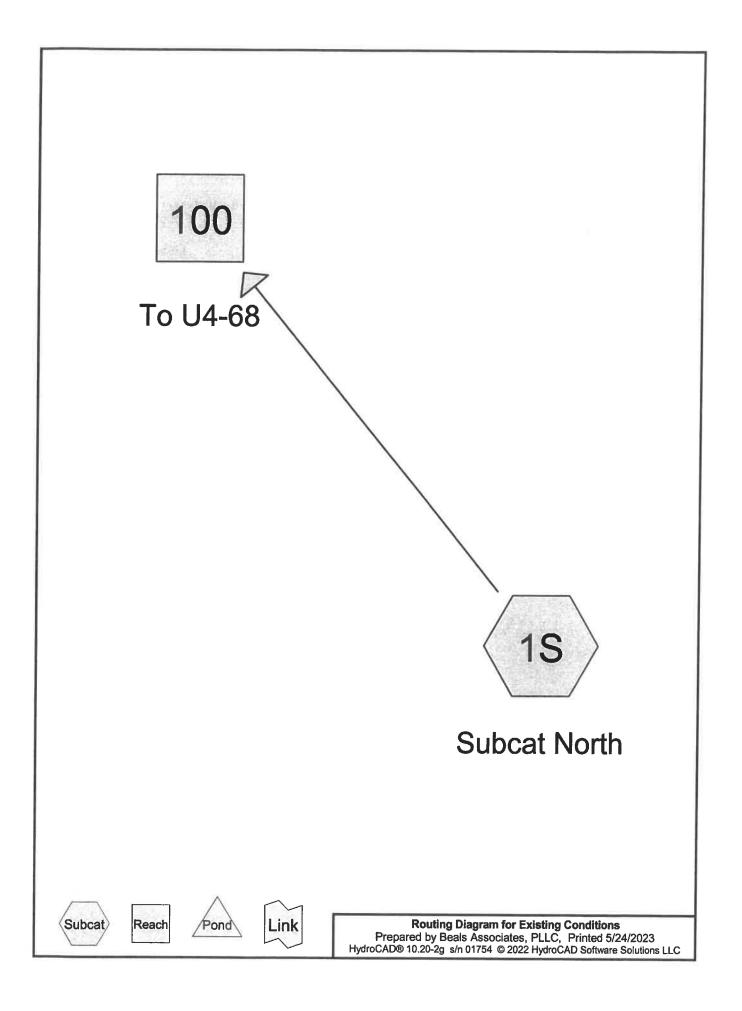
Inflow=16.32 cfs 1.934 af Outflow=16.32 cfs 1.934 af

Total Runoff Area = 8.331 ac Runoff Volume = 1.934 af Average Runoff Depth = 2.79" 96.46% Pervious = 8.036 ac 3.54% Impervious = 0.295 ac

Summary for Subcatchment 1S: Subcat North

Runoff	=	16.32 cfs @	12.38 hrs,	Volume=	1.934 af,	Depth= 2.79"
Routed	to Rea	ach 100 : To U4	4-68		,	

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.52"

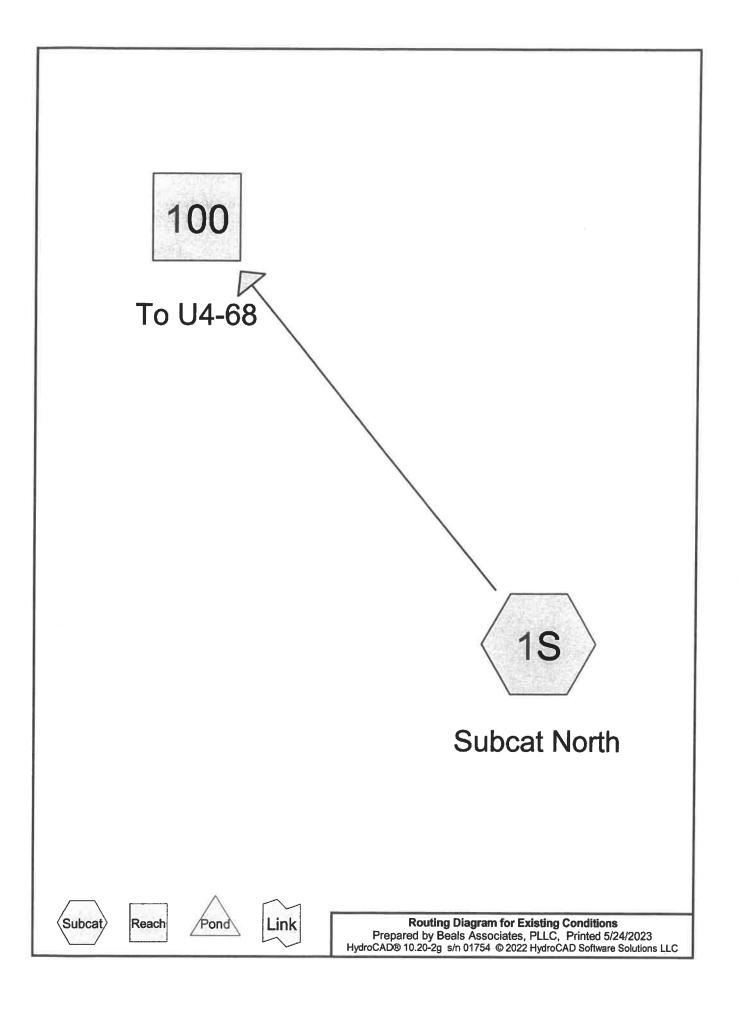

_	A	rea (sf)	CN	Description			
		11,149	98	Paved roads w/curbs & sewers, HSG C			
		1,703	98	Roofs, HSC) C		
		07,605	74	>75% Gras	s cover, Go	bod, HSG C	
		43,557			od, HSG C		
-		98,892	77	Woods, Go	od, HSG D		
	3	62,906		Weighted A			
		50,054			vious Area		
		12,852	1	3.54% Impe	ervious Are	a	
	-		•				
	Tc	Length	Slope		Capacity	Description	
-	(min)	(feet)	(ft/ft)		(cfs)		
	11.2	50	0.0250	0.07		Sheet Flow, Sheet	
						Woods: Light underbrush n= 0.400 P2= 3.24"	
	12.6	397	0.0110	0.52		Shallow Concentrated Flow, SC to VPD	
						Woodland Kv= 5.0 fps	
	2.3	413	0.0072	3.03	94.50		
						Area= 31.2 sf Perim= 51.0' r= 0.61'	
+						n= 0.030 Earth, grassed & winding	
	26.1	860	Total				

Summary for Reach 100: To U4-68

Inflow Are	a =	8.331 ac,	3.54% Impervious, Inflow I	Depth = 2.79"	for 10-Yr event
Inflow	=	16.32 cfs @	12.38 hrs, Volume=	1.934 af	
Outflow	=	16.32 cfs @	12.38 hrs, Volume=	1.934 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

ð.

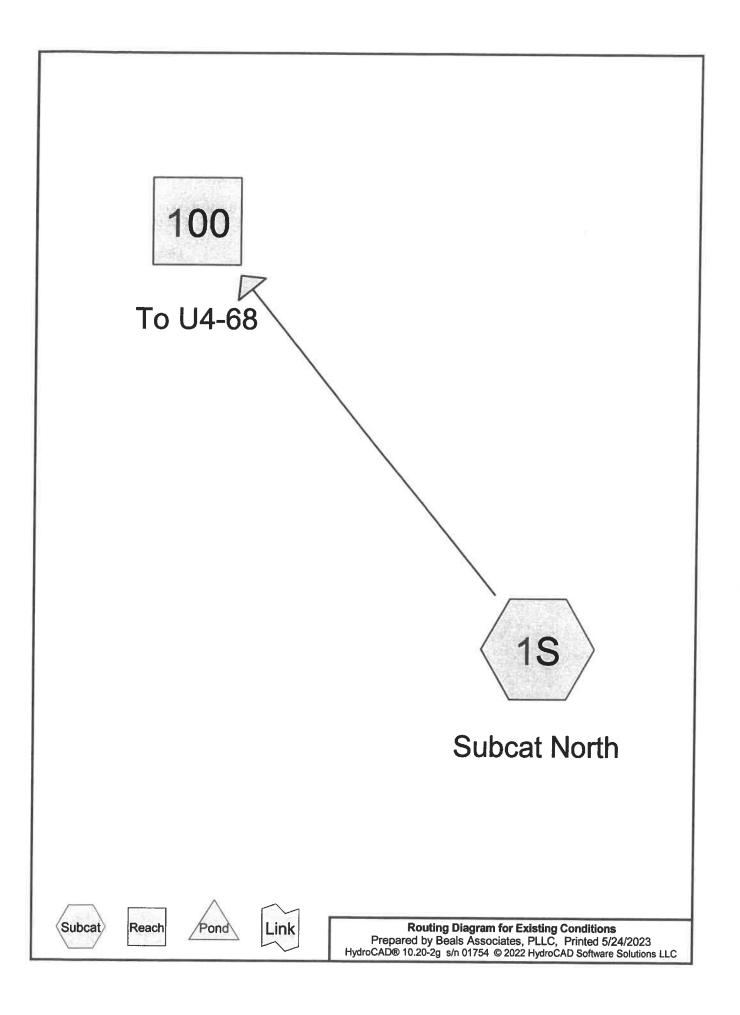

	242 S Main - Ex Cond
Existing Conditions	Type III 24-hr 25-Yr Rainfall=7.01"
Prepared by Beals Associates, PLLC	Printed 5/24/2023
HydroCAD® 10.20-2g s/n 01754 © 2022 HydroCAD Software Solutions	LC Page 5

Subcatchment 1S: Subcat NorthRunoff Area=362,906 sf 3.54% ImperviousRunoff Depth=4.05"Flow Length=860'Tc=26.1 minCN=74Runoff=23.78 cfs 2.812 af

Reach 100: To U4-68

Inflow=23.78 cfs 2.812 af Outflow=23.78 cfs 2.812 af

Total Runoff Area = 8.331 ac Runoff Volume = 2.812 af Average Runoff Depth = 4.05" 96.46% Pervious = 8.036 ac 3.54% Impervious = 0.295 ac


	242 S Main - Ex Cond
Existing Conditions	Type III 24-hr 50-Yr Rainfall=8.41"
Prepared by Beals Associates, PLLC	Printed 5/24/2023
HydroCAD® 10.20-2g s/n 01754 © 2022 HydroCAD Software Solutions	LLC Page 6

Subcatchment 1S: Subcat North Runoff Area=362,906 sf 3.54% Impervious Runoff Depth=5.29" Flow Length=860' Tc=26.1 min CN=74 Runoff=31.01 cfs 3.675 af

Reach 100: To U4-68

Inflow=31.01 cfs 3.675 af Outflow=31.01 cfs 3.675 af

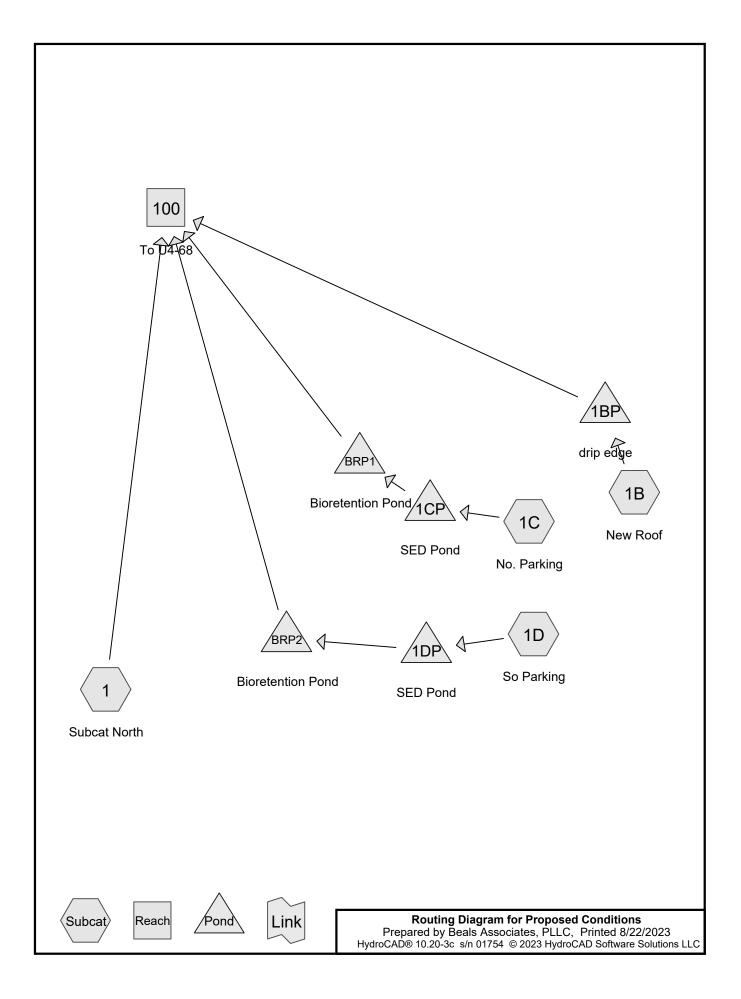
Total Runoff Area = 8.331 ac Runoff Volume = 3.675 af Average Runoff Depth = 5.29" 96.46% Pervious = 8.036 ac 3.54% Impervious = 0.295 ac

		242 S Main - Ex Cond
Existing Conditions	Type III 24-hr	100 Yr Rainfall=10.06"
Prepared by Beals Associates, PLLC		Printed 5/24/2023
HydroCAD® 10.20-2g s/n 01754 © 2022 HydroCAD Software Solution	ns LLC	Page 7

Subcatchment 1S: Subcat North

Runoff Area=362,906 sf 3.54% Impervious Runoff Depth=6.80" Flow Length=860' Tc=26.1 min CN=74 Runoff=39.65 cfs 4.723 af

Reach 100: To U4-68


Inflow=39.65 cfs 4.723 af Outflow=39.65 cfs 4.723 af

Total Runoff Area = 8.331 ac Runoff Volume = 4.723 af Average Runoff Depth = 6.80" 96.46% Pervious = 8.036 ac 3.54% Impervious = 0.295 ac

APPENDIX II

Proposed Conditions Drainage Analysis

Summary 2 YR - 24 HR rainfall = 3.62" Complete 10 YR - 24 HR rainfall = 5.50" Summary 25 YR - 24 HR rainfall = 6.99" Summary 50 YR - 24 HR rainfall = 8.38" Summary 100 YR - 24 HR rainfall = 10.06"

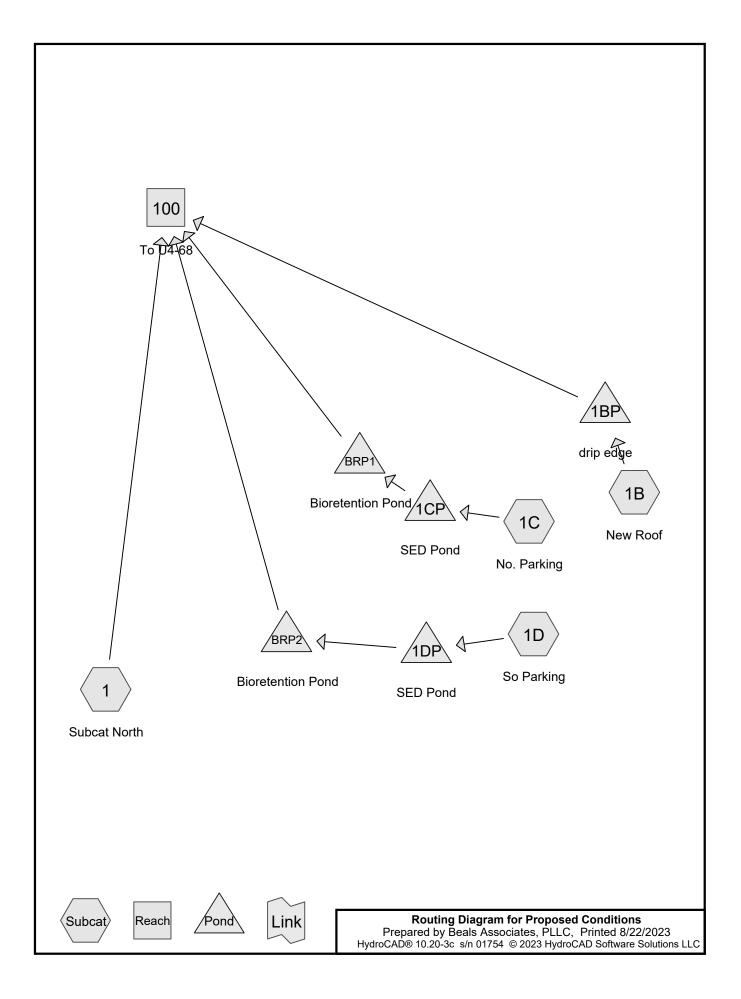
Printed 8/22/2023 Page 2

Area Listing (all nodes)

Area (acres)	CN	Description (subcatchment-numbers)
1.986	74	>75% Grass cover, Good, HSG C (1, 1B, 1C, 1D)
0.319	98	Paved parking, HSG C (1C, 1D)
0.256	98	Paved roads w/curbs & sewers, HSG C (1, 1D)
0.233	98	Roofs, HSG C (1, 1B)
3.296	70	Woods, Good, HSG C (1)
2.270	77	Woods, Good, HSG D (1)
8.360	76	TOTAL AREA

Proposed Conditions Prepared by Beals Associates, PLLC HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions LLC

Printed 8/22/2023 Page 3


Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
6.090	HSG C	1, 1B, 1C, 1D
2.270	HSG D	1
0.000	Other	
8.360		TOTAL AREA

	242 So Main St
Proposed Conditions	Type III 24-hr 2-Yr Rainfall=3.62"
Prepared by Beals Associates, PLLC	Printed 8/22/2023
HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions LLC	C Page 4
Time span=0.00-72.00 hrs, dt=0.01 hrs, 72 Runoff by SCS TR-20 method, UH=SCS, We	

Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1: SubcatNorth	Runoff Area=325,014 sf 3.07% Impervious Runoff Depth=1.32" Flow Length=860' Tc=26.1 min CN=74 Runoff=6.72 cfs 0.823 af
Subcatchment1B: New Roof	Runoff Area=9,146 sf 92.37% Impervious Runoff Depth=3.16" Tc=6.0 min CN=96 Runoff=0.72 cfs 0.055 af
Subcatchment1C: No. Parking	Runoff Area=7,993 sf 74.58% Impervious Runoff Depth=2.75" Tc=6.0 min CN=92 Runoff=0.57 cfs 0.042 af
Subcatchment1D: So Parking	Runoff Area=22,018 sf 49.11% Impervious Runoff Depth=2.20" Flow Length=61' Tc=11.4 min CN=86 Runoff=1.09 cfs 0.093 af
Reach100: To U4-68	Inflow=6.90 cfs 0.834 af Outflow=6.90 cfs 0.834 af
Pond 1BP: drip edge Disca	Peak Elev=51.01' Storage=640 cf Inflow=0.72 cfs 0.055 af arded=0.04 cfs 0.047 af Primary=0.66 cfs 0.009 af Outflow=0.71 cfs 0.055 af
Pond 1CP: SED Pond	Peak Elev=50.71' Storage=303 cf Inflow=0.57 cfs 0.042 af Outflow=0.57 cfs 0.042 af
Pond 1DP: SED Pond	Peak Elev=51.50' Storage=934 cf Inflow=1.09 cfs 0.093 af Outflow=1.07 cfs 0.093 af
Pond BRP1: BioretentionPond Disca	Peak Elev=50.70' Storage=859 cf Inflow=0.57 cfs 0.042 af arded=0.05 cfs 0.042 af Primary=0.00 cfs 0.000 af Outflow=0.05 cfs 0.042 af
Pond BRP2: BioretentionPond Disca	Peak Elev=51.43' Storage=1,507 cf Inflow=1.07 cfs 0.093 af arded=0.13 cfs 0.091 af Primary=0.06 cfs 0.002 af Outflow=0.19 cfs 0.093 af
Total Runoff Ar	ea = 8.360 ac Runoff Volume = 1.013 af Average Runoff Depth = 1.45" 90.33% Pervious = 7.552 ac 9.67% Impervious = 0.808 ac

Proposed Conditions Prepared by Beals Associates, PLLC <u>HydroCAD® 10.20-3c s/n 01754 © 2023 HydroC</u>	242 So Main St <i>Type III 24-hr 10-Yr Rainfall=5.50"</i> Printed 8/22/2023 AD Software Solutions LLC Page 2
Runoff by SCS TR-2	2.00 hrs, dt=0.01 hrs, 7201 points 20 method, UH=SCS, Weighted-CN ns method - Pond routing by Stor-Ind method
Subcatchment1: SubcatNorth	Runoff Area=325,014 sf 3.07% Impervious Runoff Depth=2.77" ow Length=860' Tc=26.1 min CN=74 Runoff=14.53 cfs 1.722 af
Subcatchment1B: New Roof	Runoff Area=9,146 sf 92.37% Impervious Runoff Depth=5.03" Tc=6.0 min CN=96 Runoff=1.12 cfs 0.088 af
Subcatchment1C: No. Parking	Runoff Area=7,993 sf 74.58% Impervious Runoff Depth=4.58" Tc=6.0 min CN=92 Runoff=0.93 cfs 0.070 af
Subcatchment1D: So Parking	Runoff Area=22,018 sf 49.11% Impervious Runoff Depth=3.94" Flow Length=61' Tc=11.4 min CN=86 Runoff=1.92 cfs 0.166 af
Reach100: To U4-68	Inflow=16.20 cfs 1.813 af Outflow=16.20 cfs 1.813 af
Pond 1BP: drip edge Discarded=0.04 of	Peak Elev=51.01' Storage=641 cf Inflow=1.12 cfs 0.088 af cfs 0.058 af Primary=1.08 cfs 0.030 af Outflow=1.12 cfs 0.088 af
Pond 1CP: SED Pond	Peak Elev=50.76' Storage=320 cf Inflow=0.93 cfs 0.070 af Outflow=0.92 cfs 0.070 af
Pond 1DP: SED Pond	Peak Elev=51.58' Storage=994 cf Inflow=1.92 cfs 0.166 af Outflow=1.89 cfs 0.166 af
Pond BRP1: BioretentionPond Discarded=0.05	Peak Elev=50.87' Storage=983 cf Inflow=0.92 cfs 0.070 af cfs 0.053 af Primary=0.64 cfs 0.017 af Outflow=0.69 cfs 0.070 af
Pond BRP2: BioretentionPond Discarded=0.16	Peak Elev=51.59' Storage=1,845 cf Inflow=1.89 cfs 0.166 af cfs 0.122 af Primary=1.07 cfs 0.044 af Outflow=1.23 cfs 0.166 af

Total Runoff Area = 8.360 acRunoff Volume = 2.046 afAverage Runoff Depth = 2.94"90.33% Pervious = 7.552 ac9.67% Impervious = 0.808 ac

Summary for Subcatchment 1: Subcat North

Runoff = 14.53 cfs @ 12.38 hrs, Volume= 1.722 af, Depth= 2.77" Routed to Reach 100 : To U4-68

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.50"

Ar	rea (sf)	CN I	Description		
	8,285	98 I	Paved road	ls w/curbs &	& sewers, HSG C
	1,703	98 I	Roofs, HSC	ЭC	
	72,577	74 >	>75% Gras	s cover, Go	bod, HSG C
	43,557		,	od, HSG C	
	98,892	77 \	Noods, Go	od, HSG D	
3	25,014		Neighted A		
3	15,026			rvious Area	
	9,988		3.07% Impe	ervious Are	а
_				_	
Tc	Length	Slope			Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
11.2	50	0.0250	0.07		Sheet Flow, Sheet
					Woods: Light underbrush n= 0.400 P2= 3.24"
12.6	397	0.0110	0.52		Shallow Concentrated Flow, SC to VPD
					Woodland Kv= 5.0 fps
2.3	413	0.0072	3.03	94.50	· •
					Area= 31.2 sf Perim= 51.0' r= 0.61'
					n= 0.030 Earth, grassed & winding
26.1	860	Total			

Summary for Subcatchment 1B: New Roof

Runoff = 1.12 cfs @ 12.08 hrs, Volume= 0.088 af, Depth= 5.03" Routed to Pond 1BP : drip edge

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.50"

A	rea (sf)	CN	Description			
	8,448	98	Roofs, HSC	ЭC		
	698	74	>75% Gras	s cover, Go	bod, HSG C	
	9,146	96	Weighted A	verage		
	698		7.63% Perv	ious Area		
	8,448		92.37% Im	pervious Ar	ea	
Тс	Length	Slope	e Velocity	Capacity	Description	
(min)	(feet)	(ft/ft	,	(cfs)	•	
6.0					Direct Entry, Direct	

Summary for Subcatchment 1C: No. Parking

Runoff = 0.93 cfs @ 12.08 hrs, Volume= 0.070 af, Depth= 4.58" Routed to Pond 1CP : SED Pond

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.50"

A	rea (sf)	CN	Description		
	5,961	98	Paved park	ing, HSG C	0
	2,032	74	>75% Gras	s cover, Go	ood, HSG C
	7,993	92	Weighted A	verage	
	2,032		25.42% Pe	rvious Area	a
	5,961		74.58% lmp	pervious Ar	rea
Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description
6.0					Direct Entry, Direct

Summary for Subcatchment 1D: So Parking

Runoff	=	1.92 cfs @	12.15 hrs,	Volume=	0.166 af,	Depth= 3.94"
Routed	to Pon	d 1DP : SED	Pond			

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.50"

Α	rea (sf)	CN [Description		
	2,864	98 F	Paved road	ls w/curbs a	& sewers, HSG C
	7,950	98 F	Paved park	ing, HSG C	
	11,204	74 >	75% Gras	s cover, Go	bod, HSG C
	22,018	86 V	Veighted A	verage	
	11,204	5	50.89% Pe	rvious Area	1
	10,814	2	9.11% Im	pervious Ar	ea
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
11.2	50	0.0090	0.07		Sheet Flow, SHEET
					Grass: Dense n= 0.240 P2= 3.24"
0.2	11	0.0120	0.77		Shallow Concentrated Flow, SC TO POND
					Short Grass Pasture Kv= 7.0 fps
11.4	61	Total			

Summary for Reach 100: To U4-68

Inflow Are	ea =	8.360 ac,	9.67% Impervious, In	flow Depth = 2.60"	for 10-Yr event
Inflow	=	16.20 cfs@	12.36 hrs, Volume=	1.813 af	
Outflow	=	16.20 cfs @	12.36 hrs, Volume=	1.813 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Pond 1BP: drip edge

Inflow Area =	0.210 ac, 92.37% Impervious, Inflow E	Depth = 5.03" for 10-Yr event				
Inflow =	1.12 cfs @ 12.08 hrs, Volume=	0.088 af				
Outflow =	1.12 cfs @ 12.09 hrs, Volume=	0.088 af, Atten= 0%, Lag= 0.3 min				
Discarded =	0.04 cfs @ 9.61 hrs, Volume=	0.058 af				
Primary =	1.08 cfs @ 12.09 hrs, Volume=	0.030 af				
Routed to Reach 100 : To U4-68						

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 51.01'@ 12.09 hrs Surf.Area= 638 sf Storage= 641 cf Flood Elev= 51.10' Surf.Area= 638 sf Storage= 664 cf

Plug-Flow detention time=79.1 min calculated for 0.088 af (100% of inflow) Center-of-Mass det. time=79.1 min (839.2 - 760.2)

Volume	Invert	Avail.Stora	age Storage Desci	Storage Description				
#1	48.50'	664	cf Custom Stag	e Data (Prismati	d) isted below (Recalc)			
Elevatio (fee 48.5 51.1	et) (Area Voids sq-ft) (%) 638 0.0 638 40.0	(cubic-feet)	Cum.Store (cubic-feet) 0 664				
Device	Routing	Invert	Outlet Devices					
#1	Discarded	48.50'	3.000 in/hr Exfiltra	tion over Surfac	ce area Phase-In= 0.01'			
#2	Primary		•	0.0' long x 0.5' breadth Broad-Crested Rectangular Weir				
			Head (feet) 0.20 0					
			Coef. (English) 2.8	0 2.92 3.08 3.30	0 3.32			

Discarded OutFlowMax=0.04 cfs @ 9.61 hrs HW=48.53' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=0.85 cfs @ 12.09 hrs HW=51.01' (Free Discharge) ←2=Broad-Crested Rectangular Wei(Weir Controls 0.85 cfs @ 0.33 fps)

Summary for Pond 1CP: SED Pond

Inflow Area	a =	0.183 ac, 7	4.58% Impervi	ious, Inflow D	epth = 4.58"	for 10-Yr event
Inflow	=	0.93 cfs @	12.08 hrs, Vo	olume=	0.070 af	
Outflow	=	0.92 cfs @	12.10 hrs, Vo	olume=	0.070 af, Atte	en= 1%, Lag= 0.7 min
Primary	=	0.92 cfs @	12.10 hrs, Vo	olume=	0.070 af	
Routed	to Pon	d BRP1 : Bio	retention Pond	l		

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Starting Elev= 50.60' Surf.Area= 350 sf Storage= 262 cf Peak Elev= 50.76'@ 12.10 hrs Surf.Area= 392 sf Storage= 320 cf (58 cf above start) Flood Elev= 51.50' Surf.Area= 458 sf Storage= 424 cf (162 cf above start)

Plug-Flow detention time=72.7 min calculated for 0.064 af (91% of inflow) Center-of-Mass det. time=1.6 min (781.4 - 779.8)

Volume	Inv	ert Ava	il.Storage	e Storage Descri	ption	
#1	49.	00'	424 c	f Custom Stage	Data (Prismati	d) isted below (Recalc)
Elevatio (fee	••	Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
49.0	0	13	0.0	0	0	
50.0	0	188	100.0	101	101	
51.0	0	458	100.0	323	424	
Device	Routing		-	Itlet Devices		
#1	Primary	50	He 2.5 Co	ead (feet) 0.20 0.4 50 3.00 3.50 4.00	0 0.60 0.80 1. 4.50 2.58 2.68 2.67	ested Rectangular Weir 00 1.20 1.40 1.60 1.80 2.00 7 2.65 2.64 2.64 2.68 2.68 2.72

Primary OutFlow Max=0.91 cfs @ 12.10 hrs HW=50.76' (Free Discharge) ←1=Broad-Crested Rectangular Wei(Weir Controls 0.91 cfs @ 0.97 fps)

Summary for Pond 1DP: SED Pond

Inflow Area =	0.505 ac, 49.11% Impervious, Inflow	Depth = 3.94" for 10-Yr event
Inflow =	1.92 cfs @ 12.15 hrs, Volume=	0.166 af
Outflow =	1.89 cfs @ 12.17 hrs, Volume=	0.166 af, Atten= 1%, Lag= 1.2 min
Primary =	1.89 cfs @ 12.17 hrs, Volume=	0.166 af
Routed to Pon	nd BRP2 : Bioretention Pond	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Starting Elev= 51.33' Surf.Area= 692 sf Storage= 808 cf Peak Elev= 51.58'@ 12.17 hrs Surf.Area= 797 sf Storage= 994 cf (186 cf above start) Flood Elev= 51.80' Surf.Area= 935 sf Storage= 1,182 cf (374 cf above start)

Plug-Flow detention time=82.5 min calculated for 0.147 af (89% of inflow) Center-of-Mass det. time=3.1 min (809.0 - 805.9)

Proposed Conditions

Prepared by Beals Associates, PLLC	
HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions L	LC

Volume	Inv	ert Avail.	Storage	Storage	Description	
#1	49.0)0' 1	1,182 cf	Custom	Stage Data (P	rismatid)isted below (Recalc)
Elevation (feet 49.00 50.00 51.50 51.80))))	Surf.Area (sq-ft) 53 276 745 935		Store -feet) 0 165 766 252	Cum.Store (cubic-feet) 0 165 930 1,182	
Device	Routing Primary	935 Inve 51.3	33' 6.0' Head 2.50 Coef	et Devices ong x 3. d (feet) 0. 3.00 3.5 . (English	0' breadth Bro 20 0.40 0.60 0 4.00 4.50	Dad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 68 2.67 2.65 2.64 2.68 2.68 2.72

Primary OutFlow Max=1.89 cfs @ 12.17 hrs HW=51.58' (Free Discharge) ←1=Broad-Crested Rectangular Wei(Weir Controls 1.89 cfs @ 1.25 fps)

Summary for Pond BRP1: Bioretention Pond

Inflow Area =	0.183 ac, 7	4.58% Impervious,	Inflow Depth = 4.58" for 10-Yr event
Inflow =	0.92 cfs @	12.10 hrs, Volume=	= 0.070 af
Outflow =	0.69 cfs @	12.17 hrs, Volume=	= 0.070 af, Atten= 25%, Lag= 4.4 min
Discarded =	0.05 cfs @	12.17 hrs, Volume=	= 0.053 af
Primary =	0.64 cfs @	12.17 hrs, Volume=	= 0.017 af
Routed to Rea	ch 100 : To l	J4-68	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 50.87'@ 12.17 hrs Surf.Area= 763 sf Storage= 983 cf Flood Elev= 51.00' Surf.Area= 806 sf Storage= 1,083 cf

Plug-Flow detention time=168.2 min calculated for 0.070 af (100% of inflow) Center-of-Mass det. time=168.2 min (949.6 - 781.4)

Volume	Inve	ert Ava	il.Storage	e Storage Descr	iption	
#1	46.7	' 5'	1,083 c	f Custom Stage	e Data (Prismati	i d) isted below (Recalc)
Elevatior (feet	-	Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
46.75	5	219	0.0	0	0	
47.75	5	219	40.0	88	88	
49.25	5	219	30.0	99	186	
51.00)	806	100.0	897	1,083	
	<u>Routing</u> Primary).75' 6.	-		ested Rectangular Weir 00 1.20 1.40 1.60 1.80 2.00

Proposed Conditions Prepared by Beals Associates, PLLC HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions LLC

> 2.50 3.00 3.50 4.00 4.50 Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68 2.72 2.81 2.92 2.97 3.07 3.32

#2 Discarded 46.75' 3.000 in/hr Exfiltration over Surface area Phase-In= 0.01'

Discarded OutFlowMax=0.05 cfs@ 12.17 hrs HW=50.87' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.05 cfs)

Primary OutFlow Max=0.62 cfs @ 12.17 hrs HW=50.87' (Free Discharge) **1=Broad-Crested Rectangular Wei**(Weir Controls 0.62 cfs @ 0.85 fps)

Summary for Pond BRP2: Bioretention Pond

0.505 ac, 49.11% Impervious, Inflow Depth = 3.94" for 10-Yr event Inflow Area = Inflow = 1.89 cfs @ 12.17 hrs, Volume= 0.166 af Outflow = 1.23 cfs @ 12.33 hrs, Volume= 0.166 af, Atten= 35%, Lag= 9.4 min Discarded = 0.16 cfs @ 12.33 hrs, Volume= 0.122 af 1.07 cfs @ 12.33 hrs, Volume= 0.044 af Primarv = Routed to Reach 100 : To U4-68

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 51.59'@ 12.33 hrs Surf.Area= 2,368 sf Storage= 1,845 cf Flood Elev= 51.90' Surf.Area= 3,682 sf Storage= 2,783 cf

Plug-Flow detention time=86.2 min calculated for 0.166 af (100% of inflow) Center-of-Mass det. time=86.2 min (895.2 - 809.0)

Volume	Inve	ert Avai	il.Stora	age Storage Desc	ription	
#1	48.8	3'	2,783	3 cf Custom Stag	e Data (Prismati	i ć) isted below (Recalc)
Elevatio (fee		Surf.Area (sq-ft)	Voids (%)		Cum.Store (cubic-feet)	
48.8	-	1,583	0.0	, , ,	0	
49.8	33	1,583	40.0	0 633	633	
51.3	33	1,583	30.0) 712	1,346	
51.5	50	1,986	100.0	D 303	1,649	
51.9	90	3,682	100.0	0 1,134	2,783	
Device	Routing	In	vert	Outlet Devices		
#1	Primary	50).00'	15.0" Round Culv	/ert	
	ŗ				= 50.00' / 49.77' S	o fill, Ke= 0.700 S= 0.0051 '/' Cc= 0.900 erior, Flow Area= 1.23 sf
#2 #3	Device 1 Discarde					0 Limited to weir flow at low heads ce area Phase-In= 0.01'

Discarded OutFlowMax=0.16 cfs@ 12.33 hrs HW=51.59' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.16 cfs)

Primary OutFlowMax=1.06 cfs @ 12.33 hrs HW=51.59' (Free Discharge) 1=Culvert (Passes 1.06 cfs of 4.78 cfs potential flow) 2=Orifice/Grate (Weir Controls 1.06 cfs @ 1.43 fps)

Proposed Conditions Prepared by Beals Associates, PLLC HydroCAD® 10.20-3c s/n 01754 © 2023 Hydro	242 So Main St <i>Type III 24-hr 25-Yr Rainfall=6.99"</i> Printed 8/22/2023 droCAD Software Solutions LLC Page 5
Runoff by SCS 1	00-72.00 hrs, dt=0.01 hrs, 7201 points FR-20 method, UH=SCS, Weighted-CN -Trans method - Pond routing by Stor-Ind method
Subcatchment1: SubcatNorth	Runoff Area=325,014 sf 3.07% Impervious Runoff Depth=4.03" Flow Length=860' Tc=26.1 min CN=74 Runoff=21.21 cfs 2.508 af
Subcatchment1B: New Roof	Runoff Area=9,146 sf 92.37% Impervious Runoff Depth=6.51" Tc=6.0 min CN=96 Runoff=1.43 cfs 0.114 af
Subcatchment1C: No. Parking	Runoff Area=7,993 sf 74.58% Impervious Runoff Depth=6.04" Tc=6.0 min CN=92 Runoff=1.21 cfs 0.092 af
Subcatchment1D: So Parking	Runoff Area=22,018 sf 49.11% Impervious Runoff Depth=5.36" Flow Length=61' Tc=11.4 min CN=86 Runoff=2.58 cfs 0.226 af
Reach100: To U4-68	Inflow=23.74 cfs 2.674 af Outflow=23.74 cfs 2.674 af
Pond 1BP: drip edge Discarded=0	Peak Elev=51.02' Storage=642 cf Inflow=1.43 cfs 0.114 af 0.04 cfs 0.065 af Primary=1.38 cfs 0.049 af Outflow=1.43 cfs 0.114 af
Pond 1CP: SED Pond	Peak Elev=50.79' Storage=332 cf Inflow=1.21 cfs 0.092 af Outflow=1.19 cfs 0.092 af
Pond 1DP: SED Pond	Peak Elev=51.64' Storage=1,037 cf Inflow=2.58 cfs 0.226 af Outflow=2.55 cfs 0.226 af
Pond BRP1: BioretentionPond Discarded=0	Peak Elev=50.93' Storage=1,024 cf Inflow=1.19 cfs 0.092 af 0.05 cfs 0.059 af Primary=1.09 cfs 0.033 af Outflow=1.14 cfs 0.092 af

Pond BRP2: BioretentionPondPeak Elev=51.68' Storage=2,077 cfInflow=2.55 cfs0.226 afDiscarded=0.19 cfs0.142 afPrimary=1.91 cfs0.084 afOutflow=2.10 cfs0.226 af

Total Runoff Area = 8.360 acRunoff Volume = 2.940 afAverage Runoff Depth = 4.22"90.33% Pervious = 7.552 ac9.67% Impervious = 0.808 ac

	242 So Main St <i>Type III 24-hr 50-Yr Rainfall=8.38"</i> Printed 8/22/2023 Page 6 0-72.00 hrs, dt=0.01 hrs, 7201 points R-20 method, UH=SCS, Weighted-CN
	Trans method - Pond routing by Stor-Ind method
Subcatchment1: SubcatNorth	Runoff Area=325,014 sf 3.07% Impervious Runoff Depth=5.27" Flow Length=860' Tc=26.1 min CN=74 Runoff=27.63 cfs 3.275 af
Subcatchment1B: New Roof	Runoff Area=9,146 sf 92.37% Impervious Runoff Depth=7.90" Tc=6.0 min CN=96 Runoff=1.72 cfs 0.138 af
Subcatchment1C: No. Parking	Runoff Area=7,993 sf 74.58% Impervious Runoff Depth=7.42" Tc=6.0 min CN=92 Runoff=1.46 cfs 0.113 af
SubcatchmentID: So Parking	Runoff Area=22,018 sf 49.11% Impervious Runoff Depth=6.70" Flow Length=61' Tc=11.4 min CN=86 Runoff=3.19 cfs 0.282 af
Reach100: To U4-68	Inflow=30.86 cfs 3.516 af Outflow=30.86 cfs 3.516 af

Pond 1BP: drip edgePeak Elev=51.02' Storage=643 cfInflow=1.72 cfs0.138 afDiscarded=0.04 cfs0.071 afPrimary=1.67 cfs0.067 afOutflow=1.72 cfs0.138 af

Pond 1CP: SED Pond

Pond 1DP: SED PondPeak Elev=51.68' Storage=1,074 cf Inflow=3.19 cfs 0.282 af
Outflow=3.15 cfs 0.282 af

Pond BRP1:BioretentionPondPeak Elev=50.95' Storage=1,045 cfInflow=1.45 cfs0.113 afDiscarded=0.05 cfs0.065 afPrimary=1.35 cfs0.049 afOutflow=1.41 cfs0.113 af

Pond BRP2: BioretentionPond Peak Elev=51.74' Storage=2,254 cf Inflow=3.15 cfs 0.282 af Discarded=0.21 cfs 0.158 af Primary=2.57 cfs 0.125 af Outflow=2.78 cfs 0.282 af

Total Runoff Area = 8.360 acRunoff Volume = 3.809 afAverage Runoff Depth = 5.47"90.33% Pervious = 7.552 ac9.67% Impervious = 0.808 ac

Peak Elev=50.81' Storage=343 cf Inflow=1.46 cfs 0.113 af

Outflow=1.45 cfs 0.113 af

Proposed Conditions Prepared by Beals Associates, PLLC HydroCAD® 10.20-3c s/n 01754 © 2023 Hyd	242 So Main St <i>Type III 24-hr 100 Yr Rainfall=10.06"</i> Printed 8/22/2023 roCAD Software Solutions LLC Page 7							
Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method								
Subcatchment1: SubcatNorth	Runoff Area=325,014 sf 3.07% Impervious Runoff Depth=6.80" Flow Length=860' Tc=26.1 min CN=74 Runoff=35.51 cfs 4.230 af							
Subcatchment1B: New Roof	Runoff Area=9,146 sf 92.37% Impervious Runoff Depth=9.58" Tc=6.0 min CN=96 Runoff=2.07 cfs 0.168 af							
Subcatchment1C: No. Parking	Runoff Area=7,993 sf 74.58% Impervious Runoff Depth=9.09" Tc=6.0 min CN=92 Runoff=1.77 cfs 0.139 af							
Subcatchment1D: So Parking	Runoff Area=22,018 sf 49.11% Impervious Runoff Depth=8.34" Flow Length=61' Tc=11.4 min CN=86 Runoff=3.93 cfs 0.351 af							
Reach100: To U4-68	Inflow=39.54 cfs 4.566 af Outflow=39.54 cfs 4.566 af							
Pond 1BP: drip edge Discarded=0	Peak Elev=51.02' Storage=644 cf Inflow=2.07 cfs 0.168 af .04 cfs 0.077 af Primary=2.02 cfs 0.091 af Outflow=2.06 cfs 0.168 af							
Pond 1CP: SED Pond	Peak Elev=50.84' Storage=354 cf Inflow=1.77 cfs 0.139 af Outflow=1.76 cfs 0.139 af							
Pond 1DP: SED Pond	Peak Elev=51.73' Storage=1,116 cf Inflow=3.93 cfs 0.351 af Outflow=3.89 cfs 0.351 af							
Pond BRP1: BioretentionPond Discarded=0	Peak Elev=50.98' Storage=1,068 cf Inflow=1.76 cfs 0.139 af .06 cfs 0.070 af Primary=1.65 cfs 0.069 af Outflow=1.71 cfs 0.139 af							
Pond BRP2: BioretentionPond Discarded=0	Peak Elev=51.80' Storage=2,433 cf Inflow=3.89 cfs 0.351 af .23 cfs 0.174 af Primary=3.24 cfs 0.177 af Outflow=3.47 cfs 0.351 af							
Total Runoff Area = 8.3	360 ac Runoff Volume = 4.888 af Average Runoff Depth = 7.02" 90.33% Pervious = 7.552 ac 9.67% Impervious = 0.808 ac							

APPENDIX III

Charts, Graphs, and Calculations

15" HDPE (Pond #BRP2) 1.00 0.86 1.25 9.9 13.6 0.01 0.25 0.4 15" HDPE (Pond #BRP2) 1.00 0.86 1.25 9.9 13.6 0.01 0.25 0.4 15" HDPE (Pond #BRP2) 1.00 0.86 1.25 9.9 13.6 0.01 0.25 0.4 15" HDPE (Pond #BRP2) 1.00 0.86 1.25 9.9 13.6 0.01 0.25 0.4 15" HDPE (Pond #BRP2) 1.00 0.86 1.25 9.9 13.6 0.01 0.25 0.4 15" HDPE (Pond #BRP2) 1.00 0.86 1.25 9.9 13.6 0.01 0.25 0.4 15" HDPE (Pond #BRP2) 1.00 0.86 1.25 9.9 13.6 0.01 0.25 0.4 150 Size = 0.25 Feet 3 Inches 1 1 1 100% 5 6 9 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <			RIP	RAPC	CALCULA	TIONS					
242 S Main St, Newmarket, NHBeals Associates, PLLC70 Portsmouth AvenueTo Portsmouth AvenueStratham, NHStratham, NHRip Rap equations were obtained from the NH Stormwater ManualRip Rap equations were obtained from the NH Stormwater ManualRip Rap as sized for the 10 year storm event (5.5").TAILWATER < HALF THE DoLa = (1.8 x Q) / Do 3/2 + (7 x Do)QPeak Flow & Do is Diameter of PipeW = La + 3Do or defined channel widthd50 = (0.02 x Q4/3) / (Tw x Do)Tw = Tailwater DepthT = Largest stone size of 50 x 1.5T = Tailwater Dischg. Dia. Length ofWith ofCalculatedActualThickness of ApronG DoLa (feet)W (feet)(C.F.S.) of PipeRip RapRip Rap <td cols<="" th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td>	<th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>										
Beak Associates, PLLCInterpretation7070Portsmouth AvenueInterpretationInterpretationStratham, NHStratham, NHStratham, NHRip Rap equations were obtained from the NH Stormwater ManualInterpretationRip Rap was sized for the 10 year storm event (5.5").TAILWATER < HALF THE Do											
70 Portsmouth AvenueIntermediate intermediate							1				
Stratham, NHIntermediate Stratham, NHRip Rap equations were obtained from the NH Stormwater ManualIntermediate Stormwater ManualIntermediate Stormwater ManualRip Rap was sized for the 10 year storm event (5.5").Intermediate Stormwater ManualIntermediate Stormwater ManualTAILWATER < HALF THE Do	70 Portsmouth Avenue										
Rip Rap equations were obtained from the NH Stormwater ManualRip Rap was sized for the 10 year storm event (5.5").Image: colspan="2">Image: colspan="2">Image: colspan="2">Image: colspan="2">Image: colspan="2">Image: colspan="2">Image: colspan="2">Image: colspan="2"Rip Rap was sized for the 10 year storm event (5.5").Image: colspan="2">Image: colspan="2"TAILWATER < HALF THE Do											
Rip Rap was sized for the 10 year storm event (5.5").Image: Constraint of the constraint of th				Stra	itham, NH						
TAILWATER < HALF THE Do	Rip Rap equations were ob	stained from	the NH .	Stormwa	ater Manua	ıl					
TAILWATER < HALF THE DoImage: Constraint of the constraint	Rin Ran was sized for the	10 year storr	n event (5 5")							
La = $(1.8 \ge Q) / Do 3/2 + (7 \ge Do)$ QQ = Peak Flow & Do is Diameter of PipeW = La + 3Do or defined channel widthTw = Tailwater DepthImage: Constraint of Co				5.5).							
W = La + 3Do or defined channel widthTw = Tailwater DepthTw = Tailwater Depthd50 = (0.02 x Q4/3) / (Tw x Do)Tw = Tailwater Depthrespective constraints of ApronT = Largest stone size of d50 x 1.5T = Thickness of Apronrespective constraints of Aprond50 = Median Store Size (0.25' Min.)d50 = Median Store Size (0.25' Min.)respective constraints of ApronCulvert orTail WaterDischg.Dia.Length ofWidth ofCalculatedActualThickCatch Basin(Feet)(C.F.S.) of PipeRip RapRip RapRip RapRip Rapof A(Sta. No.)TwQDoLa (feet)W (feet)(0.25 Min)(Feet)(Feet)15" HDPE (Pond #BRP2)1.000.861.259.913.60.010.250.4150 Size =0.25Feet3Inches0.5Feet6Inches150 Size =0.25Feet3Inches0.5Feet6Inches% of Weight SmallerSize of Stone (Inches)Size of Stone (Inches)Size of Stone (Inches)100%100%5691150%356911		1		0-1	Dool: Elow	€ D- :- D	CD'				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		· · ·		(-y	reak Flow		lameter of Pip	be			
T = Largest stone size of d50 x 1.5T = Thickness of Apron d50=Mcian Stone Size (0.25' Min.)Image: Constraint of the stone size			1	ailwater	Depth						
Image: define the define th					*						
Culvert orTail Water (Feet)Dischg.Dia.Length of Rip RapWidth of Rip RapCalculated Rip RapActualThick ThickCatch Basin(Feet)(C.F.S.)of Pipe QDoLa (feet)W (feet)(0.25 Min)(Feet)(Feet)(Feet)(Sta. No.)TwQDoLa (feet)W (feet)(0.25 Min)(Feet)	6		-).25' Min.)					
Catch Basin(Feet)(C.F.S.)of Pipe PipeRip Rap Rip RapRip Rap Rip RapRip Rap Rip RapRip Rap Rip RapRip Rap (Feet)Rip	Culvert or	Tail Water						A atrial	Thisless		
(Sta. No.) Tw Q Do La (feet) W (feet) (Q.25 Min) (Feet) (Feet) 15" HDPE (Pond #BRP2) 1.00 0.86 1.25 9.9 13.6 0.01 0.25 0.4 15" HDPE (Pond #BRP2) 1.00 0.86 1.25 9.9 13.6 0.01 0.25 0.4 15" HDPE (Pond #BRP2) 1.00 0.86 1.25 9.9 13.6 0.01 0.25 0.4 15" HDPE (Pond #BRP2) 1.00 0.86 1.25 9.9 13.6 0.01 0.25 0.4 15" HDPE (Pond #BRP2) 1.00 0.86 1.25 9.9 13.6 0.01 0.25 0.4 15" HDPE (Pond #BRP2) 1.00 0.86 1.25 9.9 13.6 0.01 0.25 0.4 150 Size of Stone (Inches) 1.00											
Table 7-24 Recommended Rip Rap Gradation RangesInches0.5Feet6InchesModel of Weight Smaller0.25Feet3Inches0.5Feet6InchesThan the Given d50 SizeFromToFromToFromTo100%5691150%35691150%356911									(Feet)		
Table 7-24 Recommended Rip Rap Gradation RangesInches0.5Feet6InchesModel of Weight Smaller0.25Feet3Inches0.5Feet6InchesModel of Weight SmallerSize of Stone (Inches)ToFromToFromTo100%56911581150%356911100%356911	15" LIDDE (Dond #DDD2)	1.00	0.00	1.05							
150 Size = 0.25 Feet 3 Inches 0.5 Feet 6 Inches% of Weight SmallerSize of Stone (Inches)Size of Stone (Inches)Size of Stone (Inches)Size of Stone (Inches)Than the Given d50 SizeFromToFromTo100%5691285%4581150%356912	15 HDFE (Folid #BKF2)	1.00	0.86	1.25	9.9	13.6	0.01	0.25	0.56		
d50 Size = 0.25 Feet 3 Inches 0.5 Feet 6 Inches% of Weight SmallerSize of Stone (Inches)Size of Stone (Inches)Size of Stone (Inches)Size of Stone (Inches)Than the Given d50 SizeFromToFromTo100%5691285%4581150%356912											
% of Weight SmallerSize of Stone (Inches)Noteof NoteNoteNoteNoteThan the Given d50 SizeFromToFromToTo100%5691285%4581150%356912		Rap Gradatior	n Ranges						*		
Than the Given d50 Size From To From To 100% 5 6 9 12 85% 4 5 8 11 50% 3 5 6 9 9		0.25				0.5	Feet	6	Inches		
100% 5 6 9 12 85% 4 5 8 11 50% 3 5 6 9 12				f Stone (Iı	nches)		Size	of Stone (Inc	hes)		
85% 4 5 8 11 50% 3 5 6 9					То		From		То		
50% 3 5 6 9					6		9		12		
							8		11		
15% 1 2 2 3									9		
	15%		1		2		2		3		

GROUNDWATER RECHARGE VOLULME (GRV) CALCULATION (Env-Wq 1507.04)

	ac	Area of HSG A soil that was replaced by impervious cover	0.40"
	ас	Area of HSG B soil that was replaced by impervious cover	0.25"
0.51	ас	Area of HSG C soil that was replaced by impervious cover	0.10"
	ac	Area of HSG D soil or impervious cover that was replaced by impervious cover	0.0"
0.10	inches	Rd = Weighted groundwater recharge depth	
0.0513	ac-in	GRV = AI * Rd	
186 (cf	GRV conversion (ac-in x 43,560 sf/ac x 1ft/12")	

Provide calculations below showing that the project meets the groundwater recharge requirements (Env-Wq 1507.04):

4,791 cf of stomrwater is infiltrated by the bioretention pond alone under a 2-YR storm event.

NHDES Alteration of Terrain

Last Revised December 2017

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

Type/Node Name:

Bioretention pond/BRP1

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable.

r			
yes		Check if you reviewed the restrictions on unlined systems outlined in Env-Wq 1508.	.07(a).
0.18		A = Area draining to the practice	
0.14		A_{I} = Impervious area draining to the practice	
	decimal	I = Percent impervious area draining to the practice, in decimal form	
	unitless	$Rv = Runoff coefficient = 0.05 + (0.9 \times I)$	
	ac-in	$WQV = 1'' \times Rv \times A$	
478		WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
119		25% x WQV (check calc for sediment forebay volume)	
358		75% x WQV (check calc for surface sand filter volume)	
	orebay	_ Method of Pretreatment? (not required for clean or roof runoff)	
162		V _{SED} = Sediment forebay volume, if used for pretreatment	<u>≥</u> 25%WQV
		n if system IS NOT underdrained:	
219	-	A _{SA} = Surface area of the practice	
3.00	_iph	Ksat _{DESIGN} = Design infiltration rate ¹	
		If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	
	Yes/No	(Use the calculations below)	
8.7	hours	T _{DRAIN} = Drain time = V / (A _{SA} * I _{DESIGN})	< 72-hrs
Calculate ti	ime to drair	n if system IS underdrained:	
	ft	E _{wqv} = Elevation of WQV (attach stage-storage table)	
	cfs	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)	
	hours	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$	<u><</u> 72-hrs
47.75	feet	E_{FC} = Elevation of the bottom of the filter course material ²	
	feet	E _{UD} = Invert elevation of the underdrain (UD), if applicable	
46.75	feet	E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p	ait)
44.00	- feet	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test	
47.75		$D_{FC \text{ to } UD}$ = Depth to UD from the bottom of the filter course	
3.75			≥1'
		D _{FC to ROCK} = Depth to bedrock from the bottom of the filter course	≥ 1'
1.00		$D_{FC \text{ to SHWT}}$ = Depth to SHWT from the bottom of the filter course	≥ 1'
50.95		Peak elevation of the 50-year storm event (infiltration can be used in analysis)	
51.00	π	Elevation of the top of the practice	
YES	cand files	50 peak elevation \leq Elevation of the top of the practice	← yes
YES	ac	or underground sand filter is proposed:	
120		Drainage Area check.	< 10 ac
	cf	V = Volume of storage ³ (attach a stage-storage table)	<u>≥</u> 75%WQV
		and a stage storage table?	<u>></u> ,2,044Q4
	inches	D_{FC} = Filter course thickness	18", or 24" if
Chart		D _{FC} = Filter course thickness	
Sheet			18", or 24" if

If a bioretention area	is proposed.					
the second se						
YES ac	Drainage Area no larger than 5 ac?	← yes				
995_cf	V = Volume of storage ³ (attach a stage-storage table)	≥ WQV				
18.0 inches	D _{FC} = Filter course thickness	18", or 24" if within GPA				
Sheet 8	Note what sheet in the plan set contains the filter course specification					
3.0 :1	Pond side slopes	<u>> 3:1</u>				
Sheet 8	Note what sheet in the plan set contains the planting plans and surface cover					
If porous pavement is proposed:						
	Type of pavement proposed (Concrete? Asphalt? Pavers? Etc.)					
acres	A _{SA} = Surface area of the pervious pavement					
:1	Ratio of the contributing area to the pervious surface area	≤ 5:1				
inches	D _{FC} = Filter course thickness	12", or 18" if				
		within GPA				
Sheet	Note what sheet in the plan set contains the filter course spec.	mod. 304.1 (see spec)				

1. Rate of the limiting layer (either the filter course or the underlying soil). Ksat_{design} includes factor of safey. See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:

NHDES Alteration of Terrain

Last Revised: January 2019

 Proposed Conditions
 Type II.

 Prepared by Beals Associates, PLLC
 HydroCAD® 10.20-2g s/n 01754 © 2022 HydroCAD Software Solutions LLC

Type III 24-hr 2-Yr Rainfall=3.62" Printed 5/24/2023

Stage-Area-Storage for Pond 1CP: SED Pond

Proposed ConditionsTyPrepared by Beals Associates, PLLCHydroCAD® 10.20-2gs/n 01754© 2022 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond BRP1: Bioretention Pond

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
46.75	219	0	49.35	253	210
46.80	219	4	49.40	269	223
46.85	219	9	49.45	286	237
46.90	219	13	49.50	303	251
46.95	219	18	49.55	320	267
47.00	219	22	49.60	336	283
47.05	219	26	49.65	353	301
47.10	219	31	49.70	370	319
47.15	219	35	49.75	387	
47.20	219	39	49.80	403	338
47.25	219	44	49.85	403	357
47.30	219	48	49.90	437	378
47.35	219	53	49.95	454	399
47.40	219	57	50.00		422
47.45	219	61	50.05	471	445
47.50	219	66	50.05	487	469
47.55	219	70	50.15	504	493
47.60	219	70	50.20	521	519
47.65	219	79	50.25	538	546
47.70	219	83	50.30	554	573
47.75	219	88	50.35	571	601
47.80	219	91	50.35	588	630
47.85	219	94	50.40	605	660
47.90	219	97	50.45	622	690
47.95	219	101	50.55	638	722
48.00	219	104	50.60	655 672	754
48.05	219	107	50.65	689	787
48.10	219	111	50.70	705	821
48.15	219	114	50.75	703	856
48.20	219	117	50.80	739	892
48.25	219	120	50.85	756	929
48.30	219	124	50.90	750	966
48.35	219	127	50.95	789	1,004
48.40	219	130	51.00	806	1,043
48.45	219	134	01.00	000	1,083
48.50	219	137			
48.55	219	140			
48.60	219	143			
48.65	219	147			
48.70	219	150			
48.75	219	153			
48.80	219	157			
48.85	219	160			
48.90	219	163			
48.95	219	166			
49.00	219	170			
49.05	219	173			
49.10	219	176			
49.15	219	180			
49.20	219	183			
49.25	219	186			
49.30	236	198			

INFILTRATION PRACTICE CRITERIA (Env-Wq 1508.06)

Type/Node Name: stone drip edge/1BP

Enter the type of infiltration practice (e.g., basin, trench) and the node name in the drainage analysis, if applicable.

	y is a second process (e.g.) busing the field and the node name in the dramage	
yes 0.21 ac	Have you reviewed Env-Wq 1508.06(a) to ensure that infiltration is allowed? A = Area draining to the practice	— ← yes
0.19 ac	A _I = Impervious area draining to the practice	
0.90 decimal	I = Percent impervious area draining to the practice, in decimal form	
0.86 unitless	$Rv = Runoff coefficient = 0.05 + (0.9 \times I)$	
0.18 ac-in	WQV= 1" x Rv x A	
659 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
165 cf	25% x WQV (check calc for sediment forebay volume)	
n/a	Method of pretreatment? (not required for clean or roof runoff)	
cf	V _{SED} = Sediment forebay volume, if used for pretreatment	<u>≥</u> 25%WQV
664 cf	V = Volume ¹ (attach a stage-storage table)	> WQV
638 sf	A _{sa} = Surface area of the bottom of the pond	
3.00 iph	Ksat _{DESIGN} = Design infiltration rate ⁴	
4.1 hours	$I_{DRAIN} = Drain time = V / (A_{SA} * I_{DESIGN})$	< 72-hrs
48.50 feet	E _{BTM} = Elevation of the bottom of the basin	
47.50 feet	E _{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test	pit)
45.00 feet	E _{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the te	st pit)
1.00 feet	D _{SHWT} = Separation from SHWT	<u>></u> * ³
3.5 feet	D _{ROCK} = Separation from bedrock	<u>></u> * ³
ft	D _{amend} = Depth of amended soil, if applicable due high infiltation rate	∽ <u>≥</u> 24"
ft	D_{T} = Depth of trench, if trench proposed	≥ 24 4 - 10 ft
Yes/No	If a trench or underground system is proposed, has observation well been provi	
	_If a trench is proposed, does materialmeet Env-Wq 1508.06(k)(2) requirements.	⁴ ← yes
Yes/No	If a basin is proposed, is the perimeter curvilinear, and basin floor flat?	← yes
	If a basin is proposed, pond side slopes.	≥3:1
51.01 ft	Peak elevation of the 10-year storm event (infiltration can be used in analysis)	
51.02 ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis)	
51.10 ft	Elevation of the top of the practice (if a basin, this is the elevation of the berm)	
YES	10 peak elevation \leq Elevation of the top of the trench? ⁵	← yes
YES	If a basin is proposed, 50-year peak elevation \leq Elevation of berm?	← yes
1 Volumo holow the		

1. Volume below the lowest invert of the outlet structure and excludes forebay volume

2. Ksat_{DESIGN} includes a factor of safety. See Env-Wq 1504.14 for requirements for determining the infiltr. rate

3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.

4. Clean, washed well graded diameter of 1.5 to 3 inches above the in-situ soil.

5. If 50-year peak elevation exceeds top of trench, the overflow must be routed in HydroCAD as secondary discharge.

Designer's Notes:

NHDES Alteration of Terrain

 Proposed Conditions
 Type

 Prepared by Beals Associates, PLLC
 HydroCAD® 10.20-2g s/n 01754 © 2022 HydroCAD Software Solutions LLC

evation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage
48.50	638	0	51.10		(cubic-feet)
48.55	638	13	51.10	638	664
48.60	638	26			
48.65	638	38			
48.70	638	51			
48.75	638	64			
48.80	638				
48.85		77			
48.90	638	89			
48.95	638	102			
	638	115			
49.00	638	128			
49.05	638	140			
49.10	638	153			
49.15	638	166			
49.20	638	179			
49.25	638	191			
49.30	638	204			
49.35	638	217			
49.40	638	230			
49.45	638	242			
49.50	638	255			
49.55	638	268			
49.60	638	281			
49.65	638	293			
49.70	638	306			
49.75	638	319			
49.80	638	332			
49.85	638	345			
49.90	638	357			
49.95	638	370			
50.00	638	383			
50.05	638	396			
50.10	638	408			
50.15	638	421			
50.20	638	434			
50.25	638	447			
50.30	638	459			
50.35	638	472			
50.40	638	485			
50.45	638	498			
50.50	638	510			
50.55	638	523			
50.60	638	536			
50.65	638	549			
50.70	638	561			
50.75	638	574			
50.80	638	587			
50.85	638	600			
50.90	638	612			
50.95	638	625			
51.00	638	638			
51.05	638	651			
1.00	000	100			

Stage-Area-Storage for Pond 1BP: drip edge

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

Type/Node Name:

Bioretention pond/BRP2

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable.

ye		Check if you reviewed the restrictions on unlined systems outlined in Env-Wq 1508.	07(a).
	1_ac	A = Area draining to the practice	
	4 ac	A ₁ = Impervious area draining to the practice	
	8 decimal	I = Percent impervious area draining to the practice, in decimal form	
	8 unitless	$Rv = Runoff coefficient = 0.05 + (0.9 \times I)$	
	4 ac-in	WQV= 1" x Rv x A	
	5 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
	9 cf	25% x WQV (check calc for sediment forebay volume)	
	7 cf	75% x WQV (check calc for surface sand filter volume)	
	forebay	Method of Pretreatment? (not required for clean or roof runoff)	
	3 cf	V _{SED} = Sediment forebay volume, if used for pretreatment	<u>></u> 25%WQV
		n if system IS NOT underdrained:	
1,583	3_sf	A _{SA} = Surface area of the practice	
3.00)_iph	Ksat _{DESIGN} = Design infiltration rate ¹	
		If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	
-	Yes/No	(Use the calculations below)	
2.2	hours	$T_{DRAIN} = Drain time = V / (A_{SA} * I_{DESIGN})$	<u><</u> 72-hrs
Calculate	time to drair	n if system IS underdrained:	
	ft	E _{wqv} = Elevation of WQV (attach stage-storage table)	
	cfs	Q_{WQV} = Discharge at the E _{WQV} (attach stage-discharge table)	
	hours	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$	<u><</u> 72-hrs
49.83	feet	E _{FC} = Elevation of the bottom of the filter course material ²	
	feet	E _{UD} = Invert elevation of the underdrain (UD), if applicable	
48.83	feet	E _{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p	it)
46.00	feet	E _{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test	
10 92	feet	$D_{FC \text{ to UD}}$ = Depth to UD from the bottom of the filter course	• •
49.65		DFC to UD - Depth to OD nom the bottom of the miter course	<u>></u> 1'
-	feet		≥1' ≥1'
3.83		$D_{FC \text{ to ROCK}}$ = Depth to bedrock from the bottom of the filter course	<u>≥</u> 1′
3.83	feet feet	$D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course	
3.83 1.00	feet feet <mark>ft</mark>	$D_{FC \text{ to ROCK}} = Depth to bedrock from the bottom of the filter course D_{FC \text{ to SHWT}} = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis)$	<u>≥</u> 1'
3.83 1.00 51.74 51.90 YES	feet feet <mark>ft ft</mark>	$D_{FC \text{ to ROCK}}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to SHWT}}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice	≥ 1' ≥ 1'
3.83 1.00 51.74 51.90 YES If a surface	feet feet <mark>ft ft</mark>	$D_{FC \text{ to ROCK}}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to SHWT}}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed:	<u>≥</u> 1'
3.83 1.00 51.74 51.90 YES	feet feet <mark>ft ft</mark>	$D_{FC \text{ to ROCK}}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to SHWT}}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation <subset elevation="" of="" practice<br="" the="" top="">or underground sand filter is proposed: Drainage Area check.</subset>	≥ 1' ≥ 1'
3.83 1.00 51.74 51.90 YES If a surface	feet feet ft ft sand filter	$D_{FC \text{ to ROCK}}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to SHWT}}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed:	≥ 1' ≥ 1' ← yes < 10 ac
3.83 1.00 51.74 51.90 YES If a surface	feet feet ft ft sand filter ac cf	$D_{FC \text{ to ROCK}}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to SHWT}}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage ³ (attach a stage-storage table)	≥ 1' ≥ 1' ← yes
3.83 1.00 51.74 51.90 YES If a surface	feet feet ft ft e sand filter ac	$D_{FC \text{ to ROCK}}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to SHWT}}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation <subset elevation="" of="" practice<br="" the="" top="">or underground sand filter is proposed: Drainage Area check.</subset>	 ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV
3.83 1.00 51.74 51.90 YES If a surface	feet feet ft ft sand filter ac cf inches	$D_{FC \text{ to ROCK}}$ = Depth to bedrock from the bottom of the filter course $D_{FC \text{ to SHWT}}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage ³ (attach a stage-storage table)	 ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV 18", or 24" if

If a bioret	ention area	is proposed:	
YES	ac	Drainage Area no larger than 5 ac?	← yes
898	cf	V = Volume of storage ³ (attach a stage-storage table)	<u>≥</u> WQV
18.0	inches	D _{FC} = Filter course thickness	18", or 24" if within GPA
Sheet	t8	Note what sheet in the plan set contains the filter course specification	
3.0):1	Pond side slopes	<u>> 3:1</u>
Sheet	t <u>8</u>	Note what sheet in the plan set contains the planting plans and surface cover	
lf porous p	oavement is	proposed:	
	acres	Type of pavement proposed (Concrete? Asphalt? Pavers? Etc.) A _{SA} = Surface area of the pervious pavement	
	:1	Ratio of the contributing area to the pervious surface area	≤ 5:1
	inches	D _{FC} = Filter course thickness	12", or 18" if within GPA
Sheet		Note what sheet in the plan set contains the filter course spec.	mod. 304.1 (see spec)

1. Rate of the limiting layer (either the filter course or the underlying soil). Ksat_{design} includes factor of safey. See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:

NHDES Alteration of Terrain

Last Revised: January 2019

Proposed Conditions

Prepared by Beals Associates, PLLC HydroCAD® 10.20-2g s/n 01754 © 2022 HydroCAD Software Solutions LLC

Elevation Storage Surface Elevation Surface Storage (feet) (sq-ft) (cubic-feet) (feet) (sq-ft) (cubic-feet) 49.00 53 0 51.60 808 1,008 49.05 64 3 51.65 840 1,049 49.10 75 6 51.70 872 1,092 49.15 86 10 51.75 903 1,136 49.20 98 15 51.80 935 1,182 49.25 109 20 49.30 120 26 49.35 131 32 49.40 142 39 49.45 153 46 49.50 165 54 49.55 176 63 49.60 187 72 49.65 198 82 49.70 209 92 49.75 220 102 49.80 231 114 49.85 243 126 49.90 254 138 49.95 265 151 50.00 276 165 50.05 292 179 50.10 307 194 50.15 323 209 50.20 339 226 50.25 354 243 50.30 370 261 50.35 385 280 50.40 401 300 50.45 417 320 50.50 432 342 50.55 448 364 50.60 464 386 50.65 479 410 50.70 495 434 50.75 511 459 50.80 526 485 50.85 542 512 50.90 557 540 50.95 573 568 51.00 589 597 51.05 604 627 51.10 620 657 51.15 636 689 51.20 651 721 51.25 667 754 51.30 682 788 51.35 698 822 51.40 714 857 51.45 729 893 51.50 745 930 51.55 777 968

Stage-Area-Storage for Pond 1DP: SED Pond

Prepared by Beals Associates, PLLC HydroCAD® 10.20-2g s/n 01754 © 2022 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond BRP2: Bioretention Pond

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
48.83	1,583	Ó	51.43	1,820	1,516
48.88	1,583	32	51.48	1,939	1,610
48.93	1,583	63	51.53	2,113	1,710
48.98	1,583	95	51.58	2,325	1,821
49.03	1,583	127	51.63	2,537	1,943
49.08	1,583	158	51.68	2,749	2,075
49.13	1,583	190	51.73	2,961	2,218
49.18	1,583	222	51.78	3,173	2,371
49.23	1,583	253	51.83	3,385	2,535
49.28	1,583	285	51.88	3,597	2,710
49.33	1,583	317			•
49.38	1,583	348			
49.43	1,583	380			
49.48	1,583	412			
49.53	1,583	443			
49.58	1,583	475			
49.63	1,583	507			
49.68	1,583	538			
49.73	1,583	570			
49.78	1,583	602			
49.83	1,583	633			
49.88	1,583	657			
49.93	1,583	681			
49.98 50.03	1,583	704			
50.08	1,583 1,583	728			
50.08	1,583	752			
50.18	1,583	776 799			
50.23	1,583	823			
50.28	1,583	847			
50.33	1,583	871			
50.38	1,583	894			
50.43	1,583	918			
50.48	1,583	942			
50.53	1,583	966			
50.58	1,583	989			
50.63	1,583	1,013			
50.68	1,583	1,037			
50.73	1,583	1,061			
50.78	1,583	1,084			
50.83	1,583	1,108			
50.88	1,583	1,132			
50.93	1,583	1,156			
50.98	1,583	1,179			
51.03	1,583	1,203			
51.08	1,583	1,227			
51.13 51.18	1,583 1,583	1,251			
51.18	1,583	1,274			
51.23	1,563	1,298			
51.33	1,583	1,322 1,346			
51.38	1,585	1,346			
01.00	1,702	1,420			

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

	Metadata for Point
Smoothing State	Yes
Location	
Latitude	43.074 degrees North
Longitude	70.951 degrees West
Elevation	10 feet
Date/Time	Thu May 18 2023 09:06:35 GMT-0400 (Eastern Daylight Time)

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.26	0.40	0.50	0.65	0.82	1.04	1yr	0.70	0.98	1.21	1.56	2.01	2.63	2.85	1yr	2.33	2.74	3.14	3.86	4.46	1yr
2yr	0.32	0.49	0.61	0.81	1.02	1.29	2yr	0.88	1.17	1.50	1.92	2.45	3.15	3.49	2yr	2.79	3.36	3.86	4.59	5.23	2yr
5yr	0.37	0.58	0.72	0.97	1.23	1.59	5yr	1.07	1.45	1.86	2.40	3.09	4.00	4.48	5yr	3.54	4.31	4.92	5.83	6.60	5yr
10yr	0.41	0.64	0.81	1.10	1.43	1.86	10yr	1.23	1.70	2.20	2.85	3.69	4.79	5.42	10yr	4.24	5.21	5.93	6.99	7.87	10vr
25yr	0.47	0.75	0.95	1.31	1.74	2.29	25yr	1.50	2,11	2.73	3.57	4.66	6.08	6.96	25yr	5.38	6.70	7.57	8.90	9.95	25yr
50yr	0.52	0.84	1.08	1,50	2.03	2.70	50yr	1.75	2.48	3.22	4.24	5.57	7.29	8.43	50yr	6.46	8.10	9.11	10.68	11.88	50yr
100yr	0.59	0.95	1.23	1.73	2.36	3.17	100yr	2.03	2.92	3.81	5.04	6.65	8.75	10.20	100yr	7.74	9.81	10.97	12.82	14.20	100vr
200yr	0.65	1.07	1.39	1.99	2.75	3.74	200yr	2.37	3.44	4.51	6.01	7.95	10.49	12.35	200yr	9.29	11.87	13.21	15.41	16.98	200vr
500yr	0.77	1.27	1.66	2.40	3.37	4.63	500yr	2.91	4.28	5.61	7.54	10.06	13.35	1 5.90	500yr	11.82	15.29	16.90	19.65	21.52	500yr

Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	<u> </u>
1yr	0.24	0.37	0.45	0.61	0.74	0.90	1yr	0.64	0.88	0.93	1.25	1.54	2.08	2.51	1yr	1.84	2.42	2.89	3.32	3.95	1yr
2yr	0.32	0.49	0.60	0.81	1.00	1.18	2yr	0.87	1.16	1.37	1.82	2.35	3.04	3.41	2yr	2.69	3.28	3.76	4.47	5.02	2yr
5yr	0.35	0.54	0.67	0.92	1.17	1.40	5yr	1.01	1.37	1.62	2.14	2.77	3.73	4.16	5yr	3.30	4.00	4.59	5.48	6.17	5yr
10yr	0.39	0.59	0.74	1.03	1.33	1.61	10yr	1.15	1.57	1.82	2.44	3.12	4.30	4.83	10yr	3.81	4.64	5.33	6.37	7.09	10vr
25yr	0.44	0.68	0.84	1.20	1.58	1.93	25yr	1.36	1.88	2.11	2.83	3.64	4.87	5.87	25yr	4.31	5.64	6.49	7.76	8.66	25yr
50yr	0.49	0.75	0.93	1.34	1.80	2.21	50yr	1.55	2.16	2.36	3.19	4.09	5.53	6.78	50yr	4.90	6.52	7.53	9.01	9.99	50yr
100yr	0.55	0.83	1.04	1.50	2.06	2.53	100yr	1.78	2.48	2.64	3.57	4.58	6.27	7.84	100yr	5.55	7.54	8.74	10.46	11.50	100vr
200yr	0.61	0.92	1.17	1.69	2.36	2.90	200yr	2.03	2.84	2.94	4.00	5.13	7.09	9.35	200yr	6.27	8.99	10.15	12.14	13.27	200yr
500yr	0.72	1.07	1.37	1.99	2.83	3.50	500yr	2.45	3.42	3.40	4.64	5.99	8.31	11.40	500yr	7.35	10.96	12.38	14.79	15.97	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.28	0.43	0.53	0.71	0.88	1.08	1yr	0.76	1.05	1.25	1.73	2.19	2.88	3.05	1yr	2.55	2.93	3.46	4.20	4.88	1yr
2yr	0.33	0.51	0.63	0.85	1.04	1.25	2yr	0.90	1.22	1.48	1.95	2.49	3.32	3.59	2yr	2.93	3.45	3.97	4,74	5.49	2yr
5yr	0.39	0.61	0.76	1.04	1.32	1.59	5yr	1.14	1.55	1.86	2.48	3.17	4.27	4.81	5yr	3.78	4.63	5.28	6.20	7.02	5yr
10yr	0.46	0.71	0.88	1.23	1.59	1.93	10yr	1.37	1.89	2.24	3.03	3.81	5.29	6.02	10yr	4.69	5.79	6.57	7.64	8.61	10yr
25yr	0.56	0.86	1.07	1.53	2.01	2.50	25yr	1.73	2.44	2.88	3.93	4.88	7.32	8.10	25yr	6.48	7.79	8.76	10.10	11.16	25yr
50yr	0.65	1.00	1.24	1.78	2.40	3.02	50yr	2.07	2.95	3.50	4.78	5.90	9.12	10.17	50yr	8.07	9.78	10.91	12.48	13.69	50vr
100yr	0.77	1.16	1.45	2.09	2.87	3.65	100yr	2.48	3.57	4.25	5.85	7.15	11.36	12.76	100yr	10.06	12.27	13.58	15.43	16.80	100vr
200yr	0.89	1.34	1.70	2.46	3.43	4.44	200yr	2.96	4.34	5.18	7.14	8.65	14.21	15.60	200yr	12.57	15.00	16.91	19.08	20.64	200vr
500yr	1.09	1.63	2.09	3.04	4.33	5.71	500yr	3.73	5.58	6.70	9.33	11.14	19.10	20.98	500yr	16.91	20.17	22.60	25.31	27.14	500vr

4

	No. 5	
	lication	2009
SNNE	al Put	mber.
SSSN	Specia	Septe

No. 5	
Publication	ber, 2009
ā	Ξ
ö	ę.
ĕ	ě.

Other		loamy over gravelly	cobbly loamy sand		loamy over sand/oravel	loamy over sandy	single grain, loose	sitt loam	gravely sandy loam in Cd	strata of fine sand		fine sandv loam	channerv silt loam in Cd	sandy loam	ordanic over clav	former and a second a	namu can	city clay loom	any day loan	i moo	doon on one	ucep organic	organic over sill	sury ciay		lace than 20 in door	hose triait 20 it). Uccu	foamy over loamy cand	20 to 40 in deen	deeb ornanic	2000		fine sandy loam	20 to 40 in. deep	mwd to swpd	channery silt loam in Cd	loamy over loamy sand	organic over sand		loam in Cd		graveny surrace	thin state of all In C	diffi Stata sity clay loam	fine candid form in Od	sit from blatv in C	cemented (ortstein)	Very channery	C INCLUSION COMPANY	20 to 40 in. deep			cemented (ortstein)
Spodosol	~	2	6	yes	2	yes	yes	yes	yes	2	2	ves	Q	2	2	2	2			2 2	2 2	2		2		Nee	3 2	2	2	2	2	6	02	6	2	yes	2	2	2	yes	B	ACC	SD CD			Ves	ves	e	02	yes	ou	Q	yes
Soil Textures		loamy over sandy-skeletal	sandy-skeletal	sandy	loamy over sandy	loamy over sandy	sandy	loamy	loamy	sity	loamy	loamy	loamy	loamy	fine	sifty	sandv-skeletal	fine	loamv	Namo	Sabric	Damy	fine	ame	Coarse sand	loamv-skeletal	loamv	loamy over sandy	loamy	sapric	gravely sand	silty	loamy	loamy	loamy	loamy	loamy over sandy	sandy or sandy-skeletal	CO. IDAILIY OVER SALIDY (SKEIETAI)	Condu stoletel	sandy shalatal	condv	silv	sandv	loamv	loamy	sandy-skeletal	loamy	sandy over loamy	loamy	loamy over clayey	loamy over clayey	sandy
Temp.		frigid	mesic	frigid	mesic	frigid	frigid	frigid	frigid	mesic	cryic	frigid	mesic	frigid	frigid	mesic	frigid	mesic	friaid	friaid	frigid	frioid	friaid	fridid	mesic	friaid	frigid	mesic	mesic	mesic	frigid	frigid	mesic	mesic	mesic	frigid	Digu	- Digiti	T	fridid	frinid	fridid	mesic	mesic	frioid	frigid	frigid	mesic	mesic	frigid	mesic	frigid	frigid
Land Form		Outwash and Stream Terraces	Loose till, sandy textures	Outwash and Stream Terraces	Friable till, sifty, schist & phyllite	Firm, platy, sandy till	Terraces and glacial lake plains	Firm, platy, toamy till	Loose till, loarny textures	Firm, platy, silty till, schist & phyllite	Loose till, loamy textures	Silt and Clay Deposits	Terraces and glactal take plains	Outwash and Stream Terraces	Silt and Clay Deposits	Firm, platy, slity till, schist & phylite	Firm, platy, learny till	Organic Materials - Freshwater	Firm, platy, sitty till, schist & phylitte	Silt and Clav Deposits	Firm, platy, silly till, schist & phyllite	Outwash and Stream Terraces	Weathered Bedrock Till	Firm, platy, loamy till	Loose till, sandy textures	Friable till, sitty, schist & phyllite	Organic Materials - Freshwater	Outwash and Stream Terraces	Flood Plain (Bottom Land)	Loose till, loamy textures	Loose till, bedrock	Loose till, bedrock	Firm, plary, sirty till, schist & phyllite	Oranio Materialo Forchines	Flood Disin (Bottom Land)	Firm blatv how til	Outwash and Stream Terraces	Outwash and Stream Terraces	Outwash and Stream Terraces	Terraces and glacial lake blains	Outwash and Stream Terraces	Firm, platy, loamy till	Friable till, sitty, schist & phyllite	Outwash and Stream Terraces	Friable till, sifty, schist & phyllite	Sandy/loamy over sitt/clay	Friable till, siny, schist & phyllite	Sandy/loamy over sit/clay	Sandy/loamy over sit/clay	Outwash and Stream Terraces			
Group	T	2	e	-	~	~	0	~	m	m	ഹ	2	e	7	9	2	1	e	5	t	9	t	F	5	t	4	e	2	4	9	-	S	~	4	t	t	ď	.		,	-	6	en	m	e	m	m	2		4			2
Hyd.	1	m	m	A	m		20		0		υ	m	o	-	0	-	A	υ	U	υ	٥	0	o	0	A	υ	υ	m	m	PD	A	U			- c	<u>ہ</u>			0	4	A	æ	8	8	υ	υ	m	<u>م</u>	0		0	JC	2
Ksat high - C in/hr		0.06	20.0	99.0	100.0	20.0		2:0	0.6	2.0	0.2	6.0	0.2	6.0	0.2	0.2	100.0	0.2	0.6	0.2		0.2	0.2	0.2	100.0	20.0	0.6	20.0	2.0		100.0	100.0	0.0	0.0		4 0	200	100.0	0.6	100.0	100.0	100.0	0.6	100.0	0.6	2.0	20.0	5.0	0.6	2.0	700	0.2	
Ksat low - C In/hr		6.00	2:00	20.00	20.00	9.00		0.60	90.0	90.0	0.00	0.60	0.06	0.60	00.0	0.06	20.00	0.00	0.06	0.06		0.02	0.00	0.06	20.00	2.00	0.06	6.00	0.60		20.00	0.60	0.60	0.60	000	200	8.00	0.60	0.06	20.00	20.00	20.00	0.06	20.00	0.06	0.60	6.00	0.60	0.06	0.60	0000	0.0	-
Ksat high - B in/hr		2.0	20.0	20.0	20.0	Z.U	00	0.2	7.U	2.0	0.2	6.0	2.0	6.0	0.2	2.0	20.0	0.2	2.0	2.0		6.0	0.6	2.0	100.0	20.0	2.0	6.0	2.0		20.0	100.0	0.0	0.0	0.0	0.0		2.0	2.0	20.0	20.0	100.0	2.0	20.0	2.0	2.0	20.0	2.0	20.0	2.0	0.0		
Ksat low - B in/hr		9.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.6	9.0	9.0	0:0	7.0	0.9	0.1	9.0	0.6	a di tanan d	0.2	0.1	9.0	20.0	2.0	0.6	2.0	0.6		6.0	9.0	0.0	0.0	90	0.6		0.6	0.6	6.0	6.0	20.0	0.6	6.0	0.6	9.0	6.0	9:0	0.0	0.0	0.0		
legend number	ž	501	146	00	477	121 E12	210	2/2	00	700	224	200	330	977	234	400	520	32	240	237	895	131	232	589	526	663	166	42	357	2300	9 9	RN2	200	280	126	442	395	505	927	22	21	613	132	313	378	5/8	413	200	128	238	338	116	
Soil Serles	Abaaalsi	Abenaki	Acton	Vacuation	Allonoch	All Croe	Banaor	Barkat	Delarade	Domio	Definition	Derksnire	Demardston	BICe	Dis shows the	Dingialintic	Doscawen	Boxford	Brayton	Buckland	Bucksport	Bumham	Buxton	Cabot	Caesar	Canaan	Canterbury	Canton	Cardigan	Characen	Champiain	Charles	Chaffield	Chaffield Var	Chesuncook	Chichester	Chocorua	Cohas	Colonel	Colton	Colton, gravely	Croghan	Dartmouth	Deerfield	Dixfield	Dixmont	Duane	Eldridge	Flinteville	Elmridge	Elmwood	Finch	

Sorted by Soil Series K_{eat} B and C horizons SSSNNE special pub no. 5

GOVE ENVIRONMENTAL SERVICES, INC.

TEST PIT DATA

Project242 South Main Street, Newmarket, NHClientD.R. Lemeiux Builders, LLCGES Project No. 2022280MM/DD/YY StaffMM/DD/YY Staff04-10-2023James Gov

James Gove, CSS#004

Test Pit No.	1	Soils Series:		Eldridge
ESHWT::	26"	Landscape:		Flat
Termination (60"	Slope:		A
Refusal:	None	Parent Material		Sand over silt
Obs. Water:	None	Ksat (above ES		6 in/hr.
Horizon A 0-10" Bw 10-26" B/C 26-48" Cd 48-60"	Color (Munsell) 10YR3/2 10YR4/4 10YR4/3 2.5Y5/2	Texture loamy sand loamy sand loamy fine sand silty clay loam	granular granular massive	e-Consistence-Redox -friable-none -friable-none -friable-2.5Y5/3 irm-7.5YR5/8

Hydrologic Soil Group of this Eldridge soil test pit is C.

Test Pit No. ESHWT:: Termination (Refusal:	None	Soils Series: Landscape: Slope: Parent Material:		Eldridge Flat A Sand over silt
Obs. Water:	59"	Ksat (above ESH	WT):	6 in/hr.
Horizon A 0-13" Bw 13-24" B/C 24-31" Cd 31-60"	Color (Munsell) 10YR3/2 10YR4/4 10YR4/3 2.5Y5/2	loamy fine sand	granular- granular- massive-	e-Consistence-Redox friable-none friable-none friable-2.5Y5/3 irm-7.5YR5/8

Hydrologic Soil Group of this Eldridge soil test pit is C.

Test Pit No.	3	Soils Series:		Eldridge
ESHWT::	15"	Landscape:		Flat
Termination (@ 60"	Slope:		A
Refusal:	None	Parent Material		Sand over silt
Obs. Water:	46"	Ksat (above ES		6 in/hr.
Horizon A 0-8" Bw 8-15" B/C 15-30" Cd 30-60"	Color (Munsell) 10YR3/2 10YR4/6 10YR4/6 2.5Y5/2	Texture loamy sand loamy sand loamy fine sand silty clay loam	granular granular massive	e-Consistence-Redox -friable-none -friable-none -friable-2.5Y5/3 firm-7.5YR5/8

Hydrologic Soil Group of this Eldridge soil test pit is C.

Test Pit No.	4	Soils Series:		Eldridge
ESHWT::	30"	Landscape:		Flat
Termination (a) 60"	Slope:		A
Refusal:	None	Parent Material:		Sand over silt
Obs. Water:	30"	Ksat (above ES)		6 in/hr.
Horizon A 0-12" E 12-24" Bhs 24-30" Cd 30-60"	Color (Munsell) 10YR3/2 2.5Y7/2 7.5YR4/6 2.5Y5/2	Texture loamy sand loamy sand loamy fine sand silty clay loam	granular granular massive	e-Consistence-Redox -friable-none -friable-none -friable-none irm-7.5YR5/8

Hydrologic Soil Group of this Eldridge soil test pit is C.

BMP Type	BMP 1.2.3,4.5.6,7	Notes	Lit. Ref.	Values acc	epted for Load	ing Analyses
ымг туре		Notes		TSS	TN	TP
	Wet Pond		B,F	70%	35%	45%
Stormwater Ponds	Wet Extended Detention Pond		A,B	80%	55%	68%
	Micropool Extended Detention Pond	TBA				
	Multiple Pond System	TBA				
	Pocket Pond	TBA				
	Shallow Wetland	1071	A,B,F,I	80%	55%	45%
Stormwater	Extended Detention Wetland		A,B,F,I	80%	55%	45%
Wetlands	Pond/Wetland System	тва				
	Gravel Wetland		Н	95%	85%	64%
	Infiltration Trench (≥75 ft from surface water)		B,D,I	90%	55%	60%
	Infiltration Trench (<75 ft from surface water)		B,D,I	90%	10%	60%
Infiltration Practices	Infiltration Basin (≥75 ft from surface water)		A,F,B,D,I	90%	60%	65%
	Infiltration Basin (<75 ft		A.F.B.D.I	90%	10%	65%
	from surface water)		7,1,0,0,1			
	Dry Wells Drip Edges			90% 90%	55% 55%	60% 60%
	Aboveground or			80%	33%	00%
	Underground Sand Filter that infiltrates WQV (≥75 ft from surface water)		A,F,B,D,I	90%	60%	65%
	Aboveground or Underground Sand Filter that infiltrates WQV (<75 ft from surface water)		A,F,B,D,I	90%	10%	65%
	Aboveground or Underground Sand Filter with underdrain		A,I,F,G,H	85%	10%	45%
	Tree Box Filter Bioretention System	TBA		90%	65%	65%
Filtering Practices	Permeable Pavement that infiltrates WQV (≥75 ft from surface water)		I,G,H A,F,B,D,I	90%	60%	65%
	Permeable Pavement that infiltrates WQV (<75 ft from surface water)		A,F,B,D,I	90%	10%	65%
	Permeable Pavement with underdrain		Use TN and TP values for sand filter w/ underdrain and outlet pipe	90%	10%	45%
Treatment Swales	Flow Through	TBA				
Vegetated Buffers	Treatment Swale Vegetated Buffers		A,B,I	73%	40%	45%
-g-area admena	Sediment Forebay	TBA	- 1001			
	Vegetated Filter Strip ⁸		A,B,I	73%	40%	45%
	Vegetated Swale		A,B,C,F,H,I	65%	20%	25%
Pro Troatmont	Flow-Through Device - Hydrodynamic Separator		A,B,G,H	35%	10%	5%
Pre-Treatment Practices	Flow-Through device - ADS Underground Multichamber Water Quality Unit (WQU)		G,H	72%	10%	9%
	Other Flow-Through Devices	TBA				
	Off-line Deep Sump Catch Basin		J,K,L,M	15%	5%	5%